
Computer Systems and
Networks

LECTURE 5: C PROGRAMMING

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

Today’s Class
o 	Pointer	basics			
o Pointers	and	multi-dimensional	arrays	
o 	malloc, calloc, free
o 	2D	array	manipulation	for	Lab	4		

o  Strings in C

Pointer Arithmetic
Only addition and subtraction are allowed with pointers.

All pointers increase and decrease by the length of the
data-type they point to.

Example: If an integer pointer, iptr holds address 32, then
after the expression iptr++,
iptr will hold 36 (assuming integer is 4 bytes).

Problem 1
The name of the array is actually a pointer pointing to the first
element of the array.

printf(“\n”, %u:array+3); //prints?______
printf(“\n”, %u:*(array+3)); //prints?______

Two methods of traversing 1-D
array

for (i=0;i<arraysize;i++)
 (array+i)=(array+i)+1;

//iterates through the
array and increments
contents by 1

for (i=0;i<arraysize;i++)
 array[i]=array[i]+1;

//iterates through the
array and increments
contents by 1

Pointer Method Subscript Method

More intuitive

Pointers and Functions: Call by
value vs. Call by reference

Call by value

main(){
a=5,b=6;
update(a,b);
printf(“%d”,a);
}
update(int a, int b)
{
a=a-b;
}

these are just copies.
No change to original
variables

Call by reference (pointer)

main(){
a=5,b=6;
update(&a,&b);
printf(“%d”,a);
}
update(int *a,int *b)
{
*a=*a-*b;
}

modification
 to actual variable

Example: Modify an array
using function call

main(){
//assume int array a of size 5
update(a,5); //name of array is starting addr.
}

update(int *a,int size) {
int i=0;
for(i=0;i<size;i++)

a[i]++;
}

Malloc – 1D
int *array; //array of integers

array = (int *)malloc(sizeof(int)*5);

60	 64	 68	 72	 76	

array[0]	 array[1]	 array[2]	 array[3]	 array[4]	
address:

value:

array	(pointer	variable)	

value:	60	

pointer’s	addr:	32	

Malloc – 2D Allocate 4x5
integers (important for lab 4)

int **array; //a double pointer

array = (int **)malloc(sizeof(int *)*4);

for(i=0;i<4;i++)
 array[i] = (int *)malloc(sizeof(int)*5);

an array of integer pointers

					 								 				 array of ints
array of ints
array of ints
array of ints

Malloc – 3D
int ***array; //a triple pointer

an array of
double pointers

					 								 				
					 								 				
					 								 				
a matrix of
single pointers

a ‘cuboid’ of integers

Problem 2

Dynamically allocate space for a 3-D color image of
width, w; height, h; color channel, c. Any pixel is accessed
as image[height][width][c].

Calloc()

	 void * calloc(int count, int
size)
◦ Basically	the	same	as	malloc!	
◦  Imagine	you	want	an	array	of	elements…	

◦ Argument	1:	#	of	elements	to	allocate	
◦ Argument	2:	Size	of	each	element	in	bytes	
◦ Return	value:	Pointer	to	the	region	

Realloc()
	 void * realloc(void *ptr, int
size);
◦ Resize	a	dynamic	region	of	memory	
◦ Note	that	it	might	move	to	a	new	address!	

◦ Argument:	Pointer	to	the	original	region	
◦ Argument	2:	Desired	size	in	bytes	of	new	region	
◦ Return	value:	Pointer	to	the	new	region	
◦  It	might	be	at	the	same	address	if	you	made	it	smaller	
◦  It	might	be	at	a	new	address	if	you	made	it	larger	

#include <stdlib.h>

Include this library to use malloc, realloc,
and calloc!

C Structures
Structures are a nice way to bring certain related items together

struct database
{
 int id_number;
 int age;
 float salary;
};
int main()
{
 struct database employee; //an object
 employee.age = 22;
 employee.id_number = 1;
 employee.salary = 12000.21;
}

structure objects access
members using dot
operator

Problem 3 (Important for Lab
4)

Declare a structure called board that contains: a double
character pointer matrix, two integer variables height and
width denoting the number of rows and columns in the matrix.
Inside main, do the following:
1.  create a structure object called myboard, initialize matrix

to NULL, set height to 7 and width to 7.
2.  Dynamically allocate matrix to hold height x width

elements

Traversing 2D array
main(){
//Assume a is dynamically allocated 2D array
update(a,5,5); //name of array is starting addr.
}

update(int **a,int height,int width) {
int i=0,j=0;
for(i=0;i<height;i++)

for(j=0;j<width;j++)
a[i][j]++;

}

Problem 4 (Useful for Lab 4)

Refer to Problem 3. Traverse the 2D matrix of
dimensions height (rows) and width (columns). Find
the first instance of small letter ‘e’. Obtain all the letters
starting from ‘e’ placed diagonally downwards in this
matrix. Store the letters in a 1D array, buffer. Make
sure that buffer is of large enough size to contain all of
the letters.

free() to free the
Allocated space

free(variable name);

Remember to free all of the variables malloc’ed

Problem 5 – Free a 2D array
(Useful for Lab 4)

free() is actually a reverse operation of malloc. The
steps you use for free is opposite of the steps for
malloc. Free a dynamically allocated 2D array.

String Operations

C Strings
	 There	is	no	such	thing	as	a	“string”	in	C!	
	 What	do	you	get?	An	array	of	characters	
◦ Terminated	by	the	null	character	'\0'

	 Must	manipulate	element	by	element…	
◦ Not	enough	room	in	the	array?		Need	a	bigger	array	

Arrays of Characters
	 char phrase[]="Math";

23

phrase

M	 A	 T	 H	 \0

phrase[0] phrase[1] phrase[2] phrase[3] phrase[4]

Null terminator character
(End of string)

Arrays of Characters
	 char phrase[8]="Math";

phrase

M	 A	 T	 H	 \0 ???	 ???	 ???	

phrase[0] phrase[1] phrase[2] phrase[3] phrase[4] phrase[5] phrase[6] phrase[7]

printf("%s\n", phrase); Prints until it reaches
 the \0 character!

Helpful Library for Character
Arrays
	 #include <string.h>
	 Useful	functions	
◦ strcpy	
◦ strcmp	–	Google	it!	
◦ strlen	–	Google	it!	
◦ strcat	

String Copy
	 char phrase1[] = "Math";
	 char phrase2[8];

	 strcpy(phrase2, phrase1);

phrase1

M	 A	 T	 H	 \0

phrase1[0] phrase1[1] phrase1[2] phrase1[3] phrase1[4]

phrase2

M	 A	 T	 H	 \0 ???	 ???	 ???	

phrase2[0] phrase2[1] phrase2[2] phrase2[3] phrase2[4] phrase2[5] phrase2[6] phrase2[7]

String Concatenation
	 char phrase1[8] = “Comp”;
	 char phrase2[] = “Sci”;

	 strcat(phrase1, phrase2);

phrase1

C	 O	 M	 P	 S

phrase1[0] phrase1[1] phrase1[2] phrase1[3] phrase1[4]

phrase2

S	 C	 I	 \0

phrase2[0] phrase2[1] phrase2[2] phrase2[3]

C	 I	 \0

phrase1[5] phrase1[6] phrase1[7]

You cannot do this:
phrase2=
phrase1+phrase2;

In-Class Participation: String
Reversal (Useful for Lab 4)

Assume a character string called word. Reverse this string (you
can use another character buffer to store the reverse string). For
the matrix (note it was part of a structure) in Problem 3, write a
C snippet to check if this reverse string is placed horizontally
anywhere in the matrix. Feel free to use string functions.

For example, if the word is: elephant, then check if
tnahpele is in the matrix.

Next Class

File I/O
Structures and Pointers

