
ì
Computer Systems and Networks
ECPE	170	– Jeff	Shafer	– University	of	the	Pacific

MIPS	Assembly

Lab Schedule

Activities
ì This	Week

ì MIPS	discussion
ì Practice	problems

(whiteboard)
ì Using	the	QtSPIM

simulator
ì Discuss	available	resources

Assignments	Due
ì Lab	10

ì Due	by	Apr	12th 5:00am

ì Lab	11
ì Due	by	Apr	19th 5:00am

ì Lab	12
ì Due	by	May	3rd 5:00am

Spring	2017Computer	Systems	and	Networks

2

Person of the Day – John Cocke

ì Computer	architecture	pioneer
ì “Father	of	RISC	Architecture”
ì Developed	IBM	801	processor,	

1975-1980

ì Winner,	ACM	Turing	Award,	1987

Spring	2017Computer	Systems	and	Networks

3

RISC	=	Reduced	Instruction	Set	Computing

Achieve	higher	performance	with	simple	
instructions	that	execute	faster

Person of the Day – John Hennessy

ì Computer	architecture	pioneer

ì Popularized	RISC	architecture	in	early	
1980’s

ì Founder	of	MIPS	Computer	Systems	
in	1984

ì Currently	president	of	an	obscure	
school:	Stanford	University

Spring	2017Computer	Systems	and	Networks

4

Class to Date

Spring	2017Computer	Systems	and	Networks

5

Human
(C	Code)

Compiler
(Assembly	
code)

Compiler
(Object	file	/	
binary	code)

Linker
(Executable	
program)

Class Now

Spring	2017Computer	Systems	and	Networks

6

Human
(Assembly	
code)

Assembler
(Object	file	/	
binary	code)

Linker
(Executable	
Program)

ì
MIPS

Spring	2017Computer	Systems	and	Networks

7

MIPS Overview

ì Family	of	computer	processors	first	introduced	in	
1981

ì Microprocessor	without	Interlocked	Pipeline	Stages
ì Original	acronym
ì Now	MIPS	stands	for	nothing	at	all…

Spring	2017Computer	Systems	and	Networks

8

MIPS Products

ì Embedded	devices
ì Cisco/Linksys	routers
ì Cable	boxes
ì MIPS	processor	is	buried	inside	System-on-a-Chip	(SOC)

ì Gaming	/	entertainment
ì Nintendo	64
ì Playstation,	Playstation 2,	PSP

ì Computers?
ì Not	so	much	anymore…
ì SGI	/	DEC	/	NEC	workstations	back	in	1990’s

Spring	2017Computer	Systems	and	Networks

9

MIPS Products

ì NASA	New	Horizons	probe
ì Launched	January	2006

ì MIPS	“Mongoose-V”	chip
ì 12	MhZ (2006,	remember?)

ì Radiation	Hardened
ì Based	on	R3000

(PlayStation	
CPU)

Spring	2017Computer	Systems	and	Networks

10

http://blog.imgtec.com/mips-processors/mips-goes-to-pluto
http://synova.com/proc/MongooseV.pdf

MIPS Design

ì RISC	–What	does	this	mean?
ì Reduced	Instruction	Set	Computing
ì Simplified	design	for	instructions
ì Use	more	instructions	to	accomplish	same	task

ì But	each	instruction	runs	much	faster!

ì 32	bits	(originally)	–What	does	this	mean?
ì 1	“word”=	32	bits
ì Size	of	data	processed	by	an	integer	add	instruction
ì New(er)	MIPS64	design	is	64	bits,	but	we	won’t	

focus	on	that

Spring	2017Computer	Systems	and	Networks

11

ì
MIPS Assembly Programming

Spring	2017Computer	Systems	and	Networks

12

Quotes – Donald Knuth

Spring	2017Computer	Systems	and	Networks

13

“People who are more than
casually interested in
computers should have at least
some idea of what the
underlying hardware is like.
Otherwise the programs they
write will be pretty weird.”
– Donald Knuth

This	is	your	motivation	in	the	assembly	labs!

Why Learn Assembly Programming?

ì Computer	Science	track
ì Understand	capabilities	(and	limitations)	of	physical	

machine
ì Ability	to	optimize	program	performance	(or	

functionality)	at	the	assembly	level	if	necessary

ì Computer	Engineer track
ì Future	courses	(e.g.	ECPE	173)	will	focus	on	processor	

design
ì Start	at	the	assembly	programming	level	and	move	into	

hardware	
ì How does	the	processor	implement	the	add instruction?
ì How does	the	processor	know	what	data	to	process?

Spring	2017Computer	Systems	and	Networks

14

Instruction Set Architecture

ì Instruction	Set	Architecture	(ISA)	is	the	interface	
between	hardware	and	software
ì Specifies	the	format	of	processor	instructions	
ì Specifies	the	format	of	memory	addresses	

(and	addressing	modes)
ì Specifies	the	primitive	operations	the	processor	can	

perform

Spring	2017Computer	Systems	and	Networks

15

Instruction Set Architecture

ì ISA	is	the	“contract”	between	the	hardware	
designer	and	the	assembly-level	programmer

ì Documented	in	a	manual	that	can	be	hundreds	or	
thousands	of	pages	long
ì Example:	Intel	64	and	IA-32	Architectures	Software	

Developers	Manual
ì http://www.intel.com/content/www/us/en/process

ors/architectures-software-developer-manuals.html
ì No	joke	– the	manual	PDF	from	December	2015

is	3883	pages	long!

Spring	2017Computer	Systems	and	Networks

16

Instruction Set Architecture

ì Processor	families	share	the	same	ISA

ì Example	ISAs:
ì Intel	x86
ì Intel	/	AMD	x86-64
ì Intel	Itanium
ì ARM
ì IBM	PowerPC
ì MIPS

Spring	2017Computer	Systems	and	Networks

17

All	completely	different,	
in	the	way	that	C++,	Java,	
Perl,	and	PHP	are	all	
different…

…	and	yet	learning	one	
language	makes	learning	
the	next	one	much	easier

Why MIPS?

ì Why	choose	MIPS?
ì The	MIPS	ISA	manual	(volume	1,	at	least)	is	a	svelte	

108	pages!
ì Extremely	common	ISA	in	textbooks
ì Freely	available	simulator
ì Common	embedded	processor
ì Good	building-block	for	other	RISC-style	processors
ì Aligns	with	ECPE	173	course

Spring	2017Computer	Systems	and	Networks

18

Arithmetic Instructions

ì Addition

ì Subtraction

Spring	2017Computer	Systems	and	Networks

19

add <result>, <input1>, <input2>

sub <result>, <input1>, <input2>

Operation	/	“Op	code” Operands

Task : Write Code

ì Write	MIPS	assembly	for

Spring	2017Computer	Systems	and	Networks

20

f	=	(g+h)	– (i+j)

add temp0, g, h
add temp1, i, j
sub f, temp0, temp1

Spring	2017Computer	Systems	and	Networks

21

Congratulations!

You’re	now	an	assembly	
programming	expert!

Data Sources

ì Previous	example	was	(just	a	little	bit) fake…
ì We	made	up	some	variables:	

temp0,	temp1,	f,	g,	h,	i,	and	j
ì This	is	what	you	do	when	programming	in	C++	

(or	any	high	level	language)

Spring	2017Computer	Systems	and	Networks

22

Problem:	You	can’t	make	up	
variables	in	assembly!
(as	least,	not	in	this	fashion)

Data Sources

Spring	2017Computer	Systems	and	Networks

23

Where	can	we	explicitly place	data	in	assembly	programming?

CPU

ALU

1. Registers
ì On	the	CPU	itself
ì Very	close	to	ALU
ì Tiny
ì Access	time:	1	cycle

2. Memory
ì Off-chip
ì Large
ì Access	time:	100+	cycles

Cache Memory

Aside – Cache

ì Review:	Does	the	programmer	explicitly	manage	
the	cache?

ì Answer:	No!
ì The	assembly	programmer	just	reads/writes	

memory	addresses
ì Cache	is	managed	automatically	in	hardware
ì Result:	Memory	appears to	be	faster	than	it	really	is

Spring	2017Computer	Systems	and	Networks

24

ECPE 71

ì From	your	knowledge	of	ECPE	71	
(Digital	Design),	how	would	you	
construct	a	register?

Spring	2017Computer	Systems	and	Networks

25

Flip	Flops!		(D	Flip	Flop	shown)

ECPE 71 – Group of Registers

Spring	2017Computer	Systems	and	Networks

26

Registers

ì MIPS	design:	32	integer	registers,	each	holding	32	bits
ì “Word	size”	=	32	bits

ì This	is	only	19	– where	are	the	rest	of	the	32?
ì Reserved	by	convention for	other	uses
ì We’ll	learn	a	few	more	later…

Spring	2017Computer	Systems	and	Networks

27

Name Use

$zero Constant	value:	ZERO

$s0-$s7 Local	variables

$t0-$t9 Temporary	results

Task : Write Code

ì Write	MIPS	assembly	using	registers for:

Spring	2017Computer	Systems	and	Networks

28

f	=	(g+h)	– (i+j)

Code:
add $t0, $s0, $s1
add $t1, $s2, $s3
sub $s4, $t0, $t1

Map:
$s0	=	g
$s1	=	h
$s2	=	i
$s3	=	j
$s4	=	f

More Arithmetic Instructions

ì Add	Immediate

Spring	2017Computer	Systems	and	Networks

29

addi <result>, <input1>, <constant>

Can	be	a	positive	or	
negative	number!

RegisterRegister

Task : Write Code

ì Write	MIPS	assembly	using	registers for:

Spring	2017Computer	Systems	and	Networks

30

f	=	g+20

Code:
addi $s0, $s1, 20

Map:
$s0	=	f
$s1	=	g

Memory

ì Challenge:	Limited	supply	of	registers
ì Physical	limitation:	We	can’t	put	more	on	the	

processor	chip,	and	maintain	their	current	speed
ì Many	elements	compete	for	space	in	the	CPU…

ì Solution:	Store	data	in	memory

ì MIPS	provides	instructions	that	transfer	data	
between	memory	and	registers

Spring	2017Computer	Systems	and	Networks

31

Memory Fundamentals

Spring	2017Computer	Systems	and	Networks

32

MIPS	cannot directly	manipulate	
data	in	memory!

Data	must	be	moved	to	a	register	
first!	(And	results	must	be	saved	to	

a	register	when	finished)

This	is	a	common	design	in	RISC-style	machines:	a	load-store architecture

Memory Fundamentals

Spring	2017Computer	Systems	and	Networks

33

Yes,	it’s	a	pain to	keep	moving	data	
between	registers	and	memory.

But	consider	it	your	motivation	to	
reduce	the	number	of	memory	
accesses.	That	will	improve	
program	performance!

Memory Fundamentals

ì Four	questions	to	ask	when	accessing	memory:
1. What	direction do	I	want	to	copy	data?	

(i.e.	to	memory,	or	from	memory?)
2. What	is	the	specific	memory	address?
3. What	is	the	specific	register	name?	(or	number)
4. How	much	data	do	I	want	to	move?

Spring	2017Computer	Systems	and	Networks

34

CPU

Memory – Fundamental Operations

Load
ì Copy	data	from	

memory	to	register

Store
ì Copy	data	from	

register	to	memory

Spring	2017Computer	Systems	and	Networks

35

CPU
Memory Memory

Memory – Determining Address

ì There	are	many	ways	to	calculate	the	
desired	memory	address
ì These	are	called	addressing	modes
ì We’ll	just	learn	one	mode	now:	

base	+	offset

ì The	base	address	could	be	HUGE!
(32	bits)
ì We’ll	place	it	in	a	register

ì The	offset	is	typically	small
ì We’ll	directly	include	it	in	the	

instruction	as	an	“immediate”

Spring	2017Computer	Systems	and	Networks

36

Memory

0

1

2

3

4

Base

Offset

MIPS	notation:		offset(base)

Memory – Register Name

ì What	is	the	name	of	the	register	to	use	as	either	
the	data	destination	(for	a	load)	or	a	data	source	
(for	a	store)?

ì Use	the	same	register	names	previously	learned

Spring	2017Computer	Systems	and	Networks

37

Memory - Data Transfer Size

ì How	much	data	do	I	want	to	load	or	store?
ì A	full	word?	(32	bits)
ì A	“half	word”?	(16	bits)
ì A	byte?	(8	bits)

ì We’ll	have	a	different	instruction	for	each	quantity	
of	data

ì No	option	to	load	an	entire	array!
ì Will	need	a	loop	that	loads	1	element	at	a	time…

Spring	2017Computer	Systems	and	Networks

38

Memory – Data Transfer Instructions

ì Load (copy	from	memory	to	register)

ì Store (copy	from	register	to	memory)

Spring	2017Computer	Systems	and	Networks

39

lw <reg>, <offset>(<base addr reg>)

lb <reg>, <offset>(<base addr reg>)

sw <reg>, <offset>(<base addr reg>)

sb <reg>, <offset>(<base addr reg>)

Word:

Byte:

Word:

Byte:

Register Memory	Location

Example

ì What	will	this	instruction	do?

ì Load	word	copies	from	memory	to	register:
ì Base	address:	stored	in	register	$s2
ì Offset:	20	bytes
ì Destination	register:	$s1
ì Amount	of	data	transferred:	1	word	(32	bits)

Spring	2017Computer	Systems	and	Networks

40

lw $s1, 20($s2)

Task : Write Code

ì Write	MIPS	assembly	for:

Spring	2017Computer	Systems	and	Networks

41

g	=	h	+	array[16]
(Array	of	words.	Can	leave	g	and	h	in	registers)

Code:
Assume $s3 is already set

lw $t0, 16($s3)
add $s1, $s2, $t0

Map:
$s1	=	g
$s2	=	h
$s3	=	base	
address	of	
array

Memory Address

ì Slight	flaw in	previous	solution
ì The	programmer	intended	to	load	the	16th array	

element
ì Each	element	is	4	bytes	(1	word)
ì The	offset	is	in	bytes
ì 16	*	4	=	64

Spring	2017Computer	Systems	and	Networks

42

Correct Code:
Assume $s3 is already set

lw $t0, 64($s3)
add $s1, $s2, $t0

Task : Write Code

ì Write	MIPS	assembly	for:

Spring	2017Computer	Systems	and	Networks

43

array[12]	=	h	+	array[8]
(Array	of	words.	Assume	h	is	in	register)

Code:
Assume $s3 is already set

lw $t0, 32($s3)
add $t1, $s2, $t0
sw $t1, 48($s3)

Map:
$s2	=	h
$s3	=	base	
address	of	
array
$t1	=	temp

Task : Write Code

ì Write	MIPS	assembly	for:

Spring	2017Computer	Systems	and	Networks

44

g	=	h	+	array[i]
(Array	of	words.	Assume	g,	h,	and	i are	in	registers)

Code:
"Multiply" i by 4
add $t1, $s4, $s4 # x2
add $t1, $t1, $t1 # x2 again
Get addr of array[i]
add $t1, $t1, $s3
Load array[i]
lw $t0, 0($t1)
Compute add
add $s1, $s2, $t0

Map:
$s1	=	g
$s2	=	h
$s3	=	base	
address	of	
array
$s4	=	i

Aside – Compiler

ì When	programming	in	C	/	C++,	are	your	variables	
(int,	float,	char,	…)	stored	in	memory	or	in	
registers?

ì Answer:	It	depends

ì Compiler	will	choose	where	to	place	variables
ì Registers:	Loop	counters,	frequently	accessed	scalar	

values,	variables	local	to	a	procedure
ì Memory:	Arrays,	infrequently	accessed	data	values

Spring	2017Computer	Systems	and	Networks

45

ì
MIPS Branches / Loops

Spring	2017Computer	Systems	and	Networks

46

Branches, Tests, Jump

ì Branch	on	Equal	(if	$1	==	$2,	goto dest)

ì Set	on	Less	Than	(if	$2	<	$3,	set	$1	=	1,	otherwise	0)

ì Jump	(goto dest)

Spring	2017Computer	Systems	and	Networks

47

beq <reg1>, <reg2>, <destination>

slt <reg1>, <reg2>, <reg3>

j <destination>

Task : Write Code

ì Write	MIPS	assembly	for:

Spring	2017Computer	Systems	and	Networks

48

if	(A	==	B)
{

<equal-code>
}
else
{

<not-equal-code>
}
<after-if-code>

A==B
?

… …

True False

Task : Write Code

ì Write	MIPS	assembly:

Spring	2017Computer	Systems	and	Networks

49

Code:
beq $s0,$s1,equal
<not-equal-code>
j done

equal: <equal-code>
j done

done: <after-if-code>

Map:
$s0	=	A
$s1	=	B

Task : Write Code

ì Write	MIPS	assembly	for:

Spring	2017Computer	Systems	and	Networks

50

while	(A	!=	B)
{

<loop-body>
}

<post-loop-code>

A!=B?

…

…

True

False

Task : Write Code

ì Write	MIPS	assembly:

Spring	2017Computer	Systems	and	Networks

51

Code:

start: beq $s0,$s1,done
<loop-body>
j start

done: <post-loop-code>

Map:
$s0	=	A
$s1	=	B

Spring	2017Computer	Systems	and	Networks

52

There	are	many,	many,	
variations	of	branch	or	test	
instructions	intended	to	
simplify	programming

1. Show:	Appendix	A	Reference

2. Discuss:	Instruction	versus	Pseudo-Instruction

Resources

ì Resources	on	Website	– view	“Resources”	page
ì MIPS	Instruction	Set	(partial	guide)

ì Resources	available	in	Sakai	site	(under	ECPE	170)
ì HP_AppA.pdf

ì Appendix	A	from	famous	Hennessy	&	Patterson	
Computer	Organization textbook

ì Assemblers,	Linkers,	and	the	SPIM	simulator
ì Starting	on	page	51	is	an	overview	of	the	MIPS	assembly	

commands!
ì MIPS_Green_Sheet.pdf

ì “Cheat	sheet”	for	expert	programmers
ì MIPS	commands,	registers,	memory	conventions,	…

Spring	2017Computer	Systems	and	Networks

53

ì
MIPS Simulator Walkthrough

Spring	2017Computer	Systems	and	Networks

54

Spring	2017Computer	Systems	and	Networks

55

Single	Step	
Button!

(Advance	by	1	instruction)

Spring	2017Computer	Systems	and	Networks

56

