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C	Programming



Lab Schedule

Activities
ì This	Week

ì Intro	to	C
ì Intro	to	Build	Tools	and	

Makefiles
ì Lab	3	– Build	Tools

ì Next	Week
ì Lab	4	– C	Programming	

Project

Deadlines
ì Lab	3	– Feb	6th 2017

by	5am

ì Lab	4	– Feb	20th 2017	
by	5am
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Person of the Day: Dennis Ritchie 

ì Creator	of C	programming	
language

ì Co-creator	of	Unix
(with	Ken	Thompson,	Brian	
Kernighan,	and	others	at	Bell	
Labs)

ì Winner	of	ACM	Turing	
Award

ì 9/9/1941—10/12/2011
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Person of the Day: Dennis Ritchie 

ì “Pretty	much	everything	on	the	web	uses	
those	two	things:	C	and	UNIX.	The	
browsers	are	written	in	C.	The	UNIX	
kernel	— that	pretty	much	the	entire	
Internet	runs	on	— is	written	in	C.	Web	
servers	are	written	in	C,	and	if	they’re	not,	
they’re	written	in	Java	or	C++,	which	are	
C	derivatives,	or	Python	or	Ruby,	which	
are	implemented	in	C.	And	all	of	the	
network	hardware	running	these	
programs	I	can	almost	guarantee	were	
written	in	C.	It’s	really	hard	to	overstate	
how	much	of	the	modern	information	
economy	is	built	on	the	work	Dennis	did.”
ì Rob	Pike,	Bell	Labs	/	Google
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Dennis	Ritchie	and	Ken	Thompson	use	a	teletypewriter	to	run	a	program	on	a	UNIX-based	
computer	system	they	co-founded	at	Bell	Labs	in	New	Jersey.	Their	development	work	
more	than	40	years	ago	facilitated	the	realization	of	the	Internet.	



ì
C Programming
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C++ Features Not in C

ì No	classes /	object-oriented	programming

ì No	new /	delete

ì No	stream	operators	(<<	and	>>),	cin,	cout,	…

ì No	C++	Standard	Libraries	(e.g.	iostream)

ì bool keyword	
ì Added	in	C99	standard

ì Declare	variables	anywhere	inside	function
ì Added	in	C99	standard
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Output with printf()

ì printf("This is a string\n");

ì printf("The integer is %i\n", num);

ì printf("The floating-point values 
are %g and %g\n", num1, num2);
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Output with printf()
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Format “Type”	Code Corresponding	Variable	Type

d or	i int (interpret as	signed	2’s comp)

u int (interpret	as	unsigned)

x int (print	as	hexadecimal)

f or	g float/double

c char

s string	(null-terminated array	of	chars)

Prefix	with	l or	ll (i.e.	“long”	or	“long	long”	for	larger	64-bit	data	types)

ì Lots	of	formatting	options	not	listed	here…
ì #	of	digits	before	/	after	decimal	point?
ì Pad	with	zeros?



Input with scanf()

ì Input	from	console

ì scanf("%d %c", &myint, &mychar)

ì Requires	the	address of	the	destination	variable
ì Use	the	& operator	to	obtain	address

ì Caveat:	Array	names	are	already	the	“address	of”!
ì char myarray[8];

scanf("%s", myarray)
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No	& needed	here!



Documentation

ì Man(ual)	pages	exist	for	common	programming	
functions	too

ì unix>  man printf

ì unix>  man scanf
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Structures
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struct database
{

int id_number;
int age;
float salary;

};

int main()
{

struct database employee; 
employee.age = 22;
employee.id_number = 1;
employee.salary = 12000.21;

}



ì
C-Strings (Arrays of Characters)

13
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C Strings

ì There	is	no	such	thing	as	a	“string”	in	C!

ì What	do	you	get?	An	array	of	characters
ì Terminated	by	the	null	character	'\0'

ì Must	manipulate	element	by	element…
ì Not	enough	room	in	the	array?		Need	a	bigger	array
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Arrays of Characters 

ì char phrase[]="Math";

15

phrase

M A T H \0

phrase[0] phrase[1] phrase[2] phrase[3] phrase[4]

Null	terminator	character	
(End	of	string)
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Arrays of Characters 

ì char phrase[8]="Math";

16

phrase

M A T H \0 ??? ??? ???

phrase[0] phrase[1] phrase[2] phrase[3] phrase[4] phrase[5] phrase[6] phrase[7]

printf("%s\n", phrase); Prints	until	it	reaches
the	\0 character!
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Helpful Library for Character Arrays

ì #include <string.h>

ì Useful	functions
ì strcpy - String	copy
ì strcmp - String	compare
ì strlen - String	length
ì strcat - String	concatenate

17
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String Copy

ì char phrase1[] = "Math";

ì char phrase2[8];

ì strcpy(phrase2, phrase1);

18

phrase
1

M A T H \0

phrase1[0] phrase1[1] phrase1[2] phrase1[3] phrase1[4]

phrase
2

M A T H \0 ??? ??? ???

phrase2[0] phrase2[1] phrase2[2] phrase2[3] phrase2[4] phrase2[5] phrase2[6] phrase2[7]
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String Concatenation

ì char phrase1[8] = “Comp”;

ì char phrase2[] = “Sci”;

ì strcat(phrase1, phrase2);

19

phrase
1

C O M P S

phrase1[0] phrase1[1] phrase1[2] phrase1[3] phrase1[4]

phrase
2

S C I \0

phrase2[0] phrase2[1] phrase2[2] phrase2[3]

C I \0

phrase1[5] phrase1[6] phrase1[7]

You	cannot	do	this:	
phrase2=
phrase1+phrase2;

Spring	2017Computer	Systems	and	Networks



ctype Library

ì Useful	for	character	manipulation

ì #include <ctype.h>

ì toupper(char) /	tolower(char) – Converts	
character	to	uppercase	or	lowercase
ì Example:	

char c = toupper('a');
printf("%c", c);  // A

20

Spring	2017Computer	Systems	and	Networks



ctype Library

ì isalpha(char) – Is	the	character	a	letter?

ì isdigit(char) – Is	the	character	a	number	0-9?

ì isspace(char) – Is	the	character	whitespace?	
(space	or	newline	character)

ì ispunct(char) – Is	the	character	punctuation?	
(technically,	a	visible	character	that	is	not	whitespace,	a	
letter,	or	a	number)

ì …	and	several	other	variations

21
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ì
Memory Management
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Memory Allocation with malloc()

ì #include <stdlib.h>

ì void * malloc(int size)

ì Allocate region	in	memory	(aka	“new”)
ì Argument:	Size	of	region	in	bytes	to	allocate
ì Return	value:	Pointer	to	the	region

ì void free(void * ptr)
ì De-allocate	region	in	memory	(aka	“delete”)
ì Argument:	Pointer	to	the	region
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Memory Allocation with malloc()

ì void * calloc(int count, int size)

ì Basically	the	same	as	malloc!
ì Imagine	you	want	an	array	of	elements…

ì Argument	1:	#	of	elements	to	allocate
ì Argument	2:	Size	of	each	element	in	bytes
ì Return	value:	Pointer	to	the	region
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Memory Allocation with malloc()

ì void * realloc(void *ptr, int size);

ì Resize a	dynamic	region	of	memory
ì Note	that	it	might	move to	a	new	address!

ì Argument:	Pointer	to	the	original	region
ì Argument	2:	Desired	size	in	bytes	of	new	region
ì Return	value:	Pointer	to	the	new	region

ì It	might	be	at	the	same	address	if	you	made	it	smaller
ì It	might	be	at	a	new	address	if	you	made	it	larger

Spring	2017Computer	Systems	and	Networks

25



Memory Management

ì Who	implemented	malloc()?

ì C	Standard	Library:			#include <stdlib.h>

ì There	are	different	C	Standard	Library	
implementations!
ì Android:	Bionic
ì Apple:	BSD-based	/	Proprietary
ì Microsoft:	Proprietary	C	Runtime	Library
ì Linux:	GNU	C	Library	(glibc)

http://www.gnu.org/software/libc/
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Memory Management

ì Where	does	the	malloc()memory	come	from?

ì The	Heap:	
ì A	region	of	memory	for	dynamic	memory	allocation
ì Per-process	– each	program	gets	its	own	heap
ì Managed	by	malloc()	and	related	functions
ì Different	from	the	stack,	which	is	for	static	variables	

(known	at	compile-time)
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Memory Management

ì malloc() outline:

1. Call	malloc() and	request	memory

2. malloc() checks	existing	heap	size
ì Sufficient?	Update	bookkeeping	to	mark	space	as	

“used”	and	return	address	to	your	program
ì Insufficient?	

1. Call	operating	system via	brk()/nmap() to	grow	
the	heap	(plus	a	little	extra	for	future	requests)

2. Update	bookkeeping	and	return	address	to	your	
program
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Memory Management

ì Why	do	we	need	to	call	free() after	calling	
malloc()?
ì Memory	leak
ì malloc() cannot	re-use	that	space	ever,	because	

its	internal	bookkeeping	still	thinks	that	region	is	
used

ì Will	only	be	recovered	upon	terminating	program
ì Operating	system	wipes	out	all	the	memory	allocated	

to	your	process	(stack,	heap,	etc…)
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Memory Management

ì OS	creates	virtual	
memory space	for	
process	when	started

ì Region	is	huge	(full	32	
or	64	bit	space)	
ì Not fully	mapped	to	

physical	memory
ì Otherwise	you	

could	only	fit	1	
program	in	memory
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Virtual	Memory	Space	
for	new	process



Memory Management

ì OS	loads	in	the	
program	from	
disk

ì “Text”	region
ì Program	code

ì “Data”	region
ì Program	fixed	

data
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)



Memory Management

ì Stack created	to	
track	program	
function	calls	
and	local	
variables
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack



Memory Management

ì Heap created	to	
store	dynamic	
memory	from	
malloc()and	
related	functions

ì Not	to	scale	–
this	unused	
region	is	huge!
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)



Memory Management

ì Program	starts	
running

ì malloc()
allocates	some	
memory
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)



Memory Management

ì Original	heap	
space	eventually	
fills	up

ì malloc()
requests
additional	space	
from	the	kernel	
by	using	brk()
system	call
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)

New		
space



Memory Management

ì free()
deallocates
blocks	from	the	
heap
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)



Memory Management

ì Program	
terminates

ì OS	expunges	
entire	virtual	
address	space
ì Everything	is	

deleted
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0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)



Buffer Overflow Vulnerability

ì What	is	a	buffer	overflow	bug?
ì char buf1[8]=“”;

char buf2[8]=“”;
strcat(buf1, “excessive”);

ì End	up	overwriting	two	characters	beyond	buf1!

38
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Buffer Overflow Vulnerability

ì Why	is	a	buffer	overflow	bug	dangerous?

ì What	is	beyond	my	buffer	in	memory?
ì Other	variables	and	data?		(probably	buf2)
ì The	stack?	(further	out)
ì The	return	address	to	jump	to	after	my	function	

finishes?

ì If	app	is	running	as	administrator,	attacker	now	has	
full	access!

39
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Memory Management

ì Limitless	opportunities	in	C	for	errors	regarding	memory	
L
ì Forgetting	to	free() some	dynamic	memory
ì Trying	to	free() dynamic	memory	more	than	once
ì Losing	a	pointer	to	dynamic	memory	(memory	is	“lost”)
ì Accessing	array	elements	past	the	end	of	the	array
ì Mis-calculating	array	pointers	that	miss	their	desired	

target

ì Will	learn	a	tool	(Valgrind)	in	Lab	5	to	analyze	your	
program	and	detect	/	trace	errors

40
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What’s the Error?
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char *a = malloc(128*sizeof(char));
char *b = malloc(128*sizeof(char));
b = a;
free(a);
free(b);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html



What’s the (Potential) Error?
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char *a = malloc(128*sizeof(char));

dataLen = <some value...>

// Copy “dataLen” bytes
// starting at *data to *a
memcpy(a, data, dataLen);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html



What’s the Error?
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ptr = (char *) malloc(strlen(string_A)); 
strcpy(ptr, string_A); 

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html



What’s the Error?
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int *get_ii()
{

int ii = 2;    // Local stack variable
return &ii;

}
main()
{
int *ii;
ii = get_ii();  
... Do stuff using ii pointer

}

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html
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http://xkcd.com/371/



Memory Management

ì What’s	a	NULL	pointer?
ì Pointer	value	is	0x000000000
ì Meaning is	that	the	pointer	is	not	pointing	anywhere

ì What	happens	if	you	dereference	a	NULL	pointer?
ì Telling	the	computer	to	read	from	(or	write)	to	the	

value	stored	in	the	pointer,	which	is	0x000000000
ì Behavior	undefined	and	generally	unpleasant	on	

various	computer	systems
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Memory Management

ì “Segfault”	=	Segmentation	Fault

ì Your	program	tried	to	read	or	write	a	virtual	memory	
address that	is	not	allowed
ì Tried	to	read	memory	outside	of	program	bounds?
ì Tried	to	write	read-only	memory	regions?	(used	for	

program	data)

ì “Segmentation”	was	the	name	of	an	old	system	(back	
before	Intel	386	processors)	used	to	divide	physical	
computer	memory	into	many	virtual	address	regions,	
one	per	application	process
ì The	Segfault name	stuck	even	though	we	now	use	paging

to	manage	virtual	memory
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