
ì
Computer Systems and Networks
ECPE	170	– Jeff	Shafer	– University	of	the	Pacific

C	Programming

Lab Schedule

Activities
ì This	Week

ì Intro	to	C
ì Intro	to	Build	Tools	and	

Makefiles
ì Lab	3	– Build	Tools

ì Next	Week
ì Lab	4	– C	Programming	

Project

Deadlines
ì Lab	3	– Feb	6th 2017

by	5am

ì Lab	4	– Feb	20th 2017	
by	5am

Spring	2017Computer	Systems	and	Networks

2

Person of the Day: Dennis Ritchie

ì Creator	of C	programming	
language

ì Co-creator	of	Unix
(with	Ken	Thompson,	Brian	
Kernighan,	and	others	at	Bell	
Labs)

ì Winner	of	ACM	Turing	
Award

ì 9/9/1941—10/12/2011

Spring	2017Computer	Systems	and	Networks

3

Person of the Day: Dennis Ritchie

ì “Pretty	much	everything	on	the	web	uses	
those	two	things:	C	and	UNIX.	The	
browsers	are	written	in	C.	The	UNIX	
kernel	— that	pretty	much	the	entire	
Internet	runs	on	— is	written	in	C.	Web	
servers	are	written	in	C,	and	if	they’re	not,	
they’re	written	in	Java	or	C++,	which	are	
C	derivatives,	or	Python	or	Ruby,	which	
are	implemented	in	C.	And	all	of	the	
network	hardware	running	these	
programs	I	can	almost	guarantee	were	
written	in	C.	It’s	really	hard	to	overstate	
how	much	of	the	modern	information	
economy	is	built	on	the	work	Dennis	did.”
ì Rob	Pike,	Bell	Labs	/	Google

Spring	2017Computer	Systems	and	Networks

4

Spring	2017Computer	Systems	and	Networks

5

Dennis	Ritchie	and	Ken	Thompson	use	a	teletypewriter	to	run	a	program	on	a	UNIX-based	
computer	system	they	co-founded	at	Bell	Labs	in	New	Jersey.	Their	development	work	
more	than	40	years	ago	facilitated	the	realization	of	the	Internet.	

ì
C Programming

Spring	2017Computer	Systems	and	Networks

6

C++ Features Not in C

ì No	classes /	object-oriented	programming

ì No	new /	delete

ì No	stream	operators	(<<	and	>>),	cin,	cout,	…

ì No	C++	Standard	Libraries	(e.g.	iostream)

ì bool keyword	
ì Added	in	C99	standard

ì Declare	variables	anywhere	inside	function
ì Added	in	C99	standard

Spring	2017Computer	Systems	and	Networks

7

Output with printf()

ì printf("This is a string\n");

ì printf("The integer is %i\n", num);

ì printf("The floating-point values
are %g and %g\n", num1, num2);

Spring	2017Computer	Systems	and	Networks

8

Output with printf()

Spring	2017Computer	Systems	and	Networks

9

Format “Type”	Code Corresponding	Variable	Type

d or	i int (interpret as	signed	2’s comp)

u int (interpret	as	unsigned)

x int (print	as	hexadecimal)

f or	g float/double

c char

s string	(null-terminated array	of	chars)

Prefix	with	l or	ll (i.e.	“long”	or	“long	long”	for	larger	64-bit	data	types)

ì Lots	of	formatting	options	not	listed	here…
ì #	of	digits	before	/	after	decimal	point?
ì Pad	with	zeros?

Input with scanf()

ì Input	from	console

ì scanf("%d %c", &myint, &mychar)

ì Requires	the	address of	the	destination	variable
ì Use	the	& operator	to	obtain	address

ì Caveat:	Array	names	are	already	the	“address	of”!
ì char myarray[8];

scanf("%s", myarray)

Spring	2017Computer	Systems	and	Networks

10

No	& needed	here!

Documentation

ì Man(ual)	pages	exist	for	common	programming	
functions	too

ì unix> man printf

ì unix> man scanf

Spring	2017Computer	Systems	and	Networks

11

Structures

Spring	2017Computer	Systems	and	Networks

12

struct database
{

int id_number;
int age;
float salary;

};

int main()
{

struct database employee;
employee.age = 22;
employee.id_number = 1;
employee.salary = 12000.21;

}

ì
C-Strings (Arrays of Characters)

13

Spring	2017Computer	Systems	and	Networks

C Strings

ì There	is	no	such	thing	as	a	“string”	in	C!

ì What	do	you	get?	An	array	of	characters
ì Terminated	by	the	null	character	'\0'

ì Must	manipulate	element	by	element…
ì Not	enough	room	in	the	array?		Need	a	bigger	array

Spring	2017Computer	Systems	and	Networks

14

Arrays of Characters

ì char phrase[]="Math";

15

phrase

M A T H \0

phrase[0] phrase[1] phrase[2] phrase[3] phrase[4]

Null	terminator	character	
(End	of	string)

Spring	2017Computer	Systems	and	Networks

Arrays of Characters

ì char phrase[8]="Math";

16

phrase

M A T H \0 ??? ??? ???

phrase[0] phrase[1] phrase[2] phrase[3] phrase[4] phrase[5] phrase[6] phrase[7]

printf("%s\n", phrase); Prints	until	it	reaches
the	\0 character!

Spring	2017Computer	Systems	and	Networks

Helpful Library for Character Arrays

ì #include <string.h>

ì Useful	functions
ì strcpy - String	copy
ì strcmp - String	compare
ì strlen - String	length
ì strcat - String	concatenate

17

Spring	2017Computer	Systems	and	Networks

String Copy

ì char phrase1[] = "Math";

ì char phrase2[8];

ì strcpy(phrase2, phrase1);

18

phrase
1

M A T H \0

phrase1[0] phrase1[1] phrase1[2] phrase1[3] phrase1[4]

phrase
2

M A T H \0 ??? ??? ???

phrase2[0] phrase2[1] phrase2[2] phrase2[3] phrase2[4] phrase2[5] phrase2[6] phrase2[7]

Spring	2017Computer	Systems	and	Networks

String Concatenation

ì char phrase1[8] = “Comp”;

ì char phrase2[] = “Sci”;

ì strcat(phrase1, phrase2);

19

phrase
1

C O M P S

phrase1[0] phrase1[1] phrase1[2] phrase1[3] phrase1[4]

phrase
2

S C I \0

phrase2[0] phrase2[1] phrase2[2] phrase2[3]

C I \0

phrase1[5] phrase1[6] phrase1[7]

You	cannot	do	this:	
phrase2=
phrase1+phrase2;

Spring	2017Computer	Systems	and	Networks

ctype Library

ì Useful	for	character	manipulation

ì #include <ctype.h>

ì toupper(char) /	tolower(char) – Converts	
character	to	uppercase	or	lowercase
ì Example:	

char c = toupper('a');
printf("%c", c); // A

20

Spring	2017Computer	Systems	and	Networks

ctype Library

ì isalpha(char) – Is	the	character	a	letter?

ì isdigit(char) – Is	the	character	a	number	0-9?

ì isspace(char) – Is	the	character	whitespace?	
(space	or	newline	character)

ì ispunct(char) – Is	the	character	punctuation?	
(technically,	a	visible	character	that	is	not	whitespace,	a	
letter,	or	a	number)

ì …	and	several	other	variations

21

Spring	2017Computer	Systems	and	Networks

ì
Memory Management

Spring	2017Computer	Systems	and	Networks

22

Memory Allocation with malloc()

ì #include <stdlib.h>

ì void * malloc(int size)

ì Allocate region	in	memory	(aka	“new”)
ì Argument:	Size	of	region	in	bytes	to	allocate
ì Return	value:	Pointer	to	the	region

ì void free(void * ptr)
ì De-allocate	region	in	memory	(aka	“delete”)
ì Argument:	Pointer	to	the	region

Spring	2017Computer	Systems	and	Networks

23

Memory Allocation with malloc()

ì void * calloc(int count, int size)

ì Basically	the	same	as	malloc!
ì Imagine	you	want	an	array	of	elements…

ì Argument	1:	#	of	elements	to	allocate
ì Argument	2:	Size	of	each	element	in	bytes
ì Return	value:	Pointer	to	the	region

Spring	2017Computer	Systems	and	Networks

24

Memory Allocation with malloc()

ì void * realloc(void *ptr, int size);

ì Resize a	dynamic	region	of	memory
ì Note	that	it	might	move to	a	new	address!

ì Argument:	Pointer	to	the	original	region
ì Argument	2:	Desired	size	in	bytes	of	new	region
ì Return	value:	Pointer	to	the	new	region

ì It	might	be	at	the	same	address	if	you	made	it	smaller
ì It	might	be	at	a	new	address	if	you	made	it	larger

Spring	2017Computer	Systems	and	Networks

25

Memory Management

ì Who	implemented	malloc()?

ì C	Standard	Library:			#include <stdlib.h>

ì There	are	different	C	Standard	Library	
implementations!
ì Android:	Bionic
ì Apple:	BSD-based	/	Proprietary
ì Microsoft:	Proprietary	C	Runtime	Library
ì Linux:	GNU	C	Library	(glibc)

http://www.gnu.org/software/libc/

Spring	2017Computer	Systems	and	Networks

26

Memory Management

ì Where	does	the	malloc()memory	come	from?

ì The	Heap:	
ì A	region	of	memory	for	dynamic	memory	allocation
ì Per-process	– each	program	gets	its	own	heap
ì Managed	by	malloc()	and	related	functions
ì Different	from	the	stack,	which	is	for	static	variables	

(known	at	compile-time)

Spring	2017Computer	Systems	and	Networks

27

Memory Management

ì malloc() outline:

1. Call	malloc() and	request	memory

2. malloc() checks	existing	heap	size
ì Sufficient?	Update	bookkeeping	to	mark	space	as	

“used”	and	return	address	to	your	program
ì Insufficient?	

1. Call	operating	system via	brk()/nmap() to	grow	
the	heap	(plus	a	little	extra	for	future	requests)

2. Update	bookkeeping	and	return	address	to	your	
program

Spring	2017Computer	Systems	and	Networks

28

Memory Management

ì Why	do	we	need	to	call	free() after	calling	
malloc()?
ì Memory	leak
ì malloc() cannot	re-use	that	space	ever,	because	

its	internal	bookkeeping	still	thinks	that	region	is	
used

ì Will	only	be	recovered	upon	terminating	program
ì Operating	system	wipes	out	all	the	memory	allocated	

to	your	process	(stack,	heap,	etc…)

Spring	2017Computer	Systems	and	Networks

29

Memory Management

ì OS	creates	virtual	
memory space	for	
process	when	started

ì Region	is	huge	(full	32	
or	64	bit	space)	
ì Not fully	mapped	to	

physical	memory
ì Otherwise	you	

could	only	fit	1	
program	in	memory

Spring	2017Computer	Systems	and	Networks

30

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Virtual	Memory	Space	
for	new	process

Memory Management

ì OS	loads	in	the	
program	from	
disk

ì “Text”	region
ì Program	code

ì “Data”	region
ì Program	fixed	

data

Spring	2017Computer	Systems	and	Networks

31

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Memory Management

ì Stack created	to	
track	program	
function	calls	
and	local	
variables

Spring	2017Computer	Systems	and	Networks

32

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Memory Management

ì Heap created	to	
store	dynamic	
memory	from	
malloc()and	
related	functions

ì Not	to	scale	–
this	unused	
region	is	huge!

Spring	2017Computer	Systems	and	Networks

33

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)

Memory Management

ì Program	starts	
running

ì malloc()
allocates	some	
memory

Spring	2017Computer	Systems	and	Networks

34

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)

Memory Management

ì Original	heap	
space	eventually	
fills	up

ì malloc()
requests
additional	space	
from	the	kernel	
by	using	brk()
system	call

Spring	2017Computer	Systems	and	Networks

35

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)

New		
space

Memory Management

ì free()
deallocates
blocks	from	the	
heap

Spring	2017Computer	Systems	and	Networks

36

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)

Memory Management

ì Program	
terminates

ì OS	expunges	
entire	virtual	
address	space
ì Everything	is	

deleted

Spring	2017Computer	Systems	and	Networks

37

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32	or	64	bit)

Text	(Program	code)

Data	(Program	data)

Stack

Heap

(Unused	/	unmapped	virtual	memory)

Buffer Overflow Vulnerability

ì What	is	a	buffer	overflow	bug?
ì char buf1[8]=“”;

char buf2[8]=“”;
strcat(buf1, “excessive”);

ì End	up	overwriting	two	characters	beyond	buf1!

38

Spring	2017Computer	Systems	and	Networks

Buffer Overflow Vulnerability

ì Why	is	a	buffer	overflow	bug	dangerous?

ì What	is	beyond	my	buffer	in	memory?
ì Other	variables	and	data?		(probably	buf2)
ì The	stack?	(further	out)
ì The	return	address	to	jump	to	after	my	function	

finishes?

ì If	app	is	running	as	administrator,	attacker	now	has	
full	access!

39

Spring	2017Computer	Systems	and	Networks

Memory Management

ì Limitless	opportunities	in	C	for	errors	regarding	memory	
L
ì Forgetting	to	free() some	dynamic	memory
ì Trying	to	free() dynamic	memory	more	than	once
ì Losing	a	pointer	to	dynamic	memory	(memory	is	“lost”)
ì Accessing	array	elements	past	the	end	of	the	array
ì Mis-calculating	array	pointers	that	miss	their	desired	

target

ì Will	learn	a	tool	(Valgrind)	in	Lab	5	to	analyze	your	
program	and	detect	/	trace	errors

40

Spring	2017Computer	Systems	and	Networks

What’s the Error?

Spring	2017Computer	Systems	and	Networks

41

char *a = malloc(128*sizeof(char));
char *b = malloc(128*sizeof(char));
b = a;
free(a);
free(b);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What’s the (Potential) Error?

Spring	2017Computer	Systems	and	Networks

42

char *a = malloc(128*sizeof(char));

dataLen = <some value...>

// Copy “dataLen” bytes
// starting at *data to *a
memcpy(a, data, dataLen);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What’s the Error?

Spring	2017Computer	Systems	and	Networks

43

ptr = (char *) malloc(strlen(string_A));
strcpy(ptr, string_A);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What’s the Error?

Spring	2017Computer	Systems	and	Networks

44

int *get_ii()
{

int ii = 2; // Local stack variable
return ⅈ

}
main()
{
int *ii;
ii = get_ii();
... Do stuff using ii pointer

}

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

Spring	2017Computer	Systems	and	Networks

45

http://xkcd.com/371/

Memory Management

ì What’s	a	NULL	pointer?
ì Pointer	value	is	0x000000000
ì Meaning is	that	the	pointer	is	not	pointing	anywhere

ì What	happens	if	you	dereference	a	NULL	pointer?
ì Telling	the	computer	to	read	from	(or	write)	to	the	

value	stored	in	the	pointer,	which	is	0x000000000
ì Behavior	undefined	and	generally	unpleasant	on	

various	computer	systems

Spring	2017Computer	Systems	and	Networks

46

Memory Management

ì “Segfault”	=	Segmentation	Fault

ì Your	program	tried	to	read	or	write	a	virtual	memory	
address that	is	not	allowed
ì Tried	to	read	memory	outside	of	program	bounds?
ì Tried	to	write	read-only	memory	regions?	(used	for	

program	data)

ì “Segmentation”	was	the	name	of	an	old	system	(back	
before	Intel	386	processors)	used	to	divide	physical	
computer	memory	into	many	virtual	address	regions,	
one	per	application	process
ì The	Segfault name	stuck	even	though	we	now	use	paging

to	manage	virtual	memory

Spring	2017Computer	Systems	and	Networks

47

