

Cloud Computing

ECPE 276

Overview

Based on "Above the Clouds: A Berkeley View of Cloud Computing", 2009

Schedule

- Tue, Jan 26th What is Cloud Computing?
 - Continuation of today's discussion
 - **Your Homework:** Pick 2-3 papers from the approved reading list that you could present and **email me**
- ▼ Thur, Jan 28th First paper presentation
 - Presenter: Dr. Shafer (use an an example)
 - MapReduce paper (used for your first project)
 - **Your Homework:** Audience members role
 - Read paper and prepare summary document

Cloud Computing

- How are we defining cloud computing again?
- And why do people use it?

What is Old and What is New?

→ Old idea – utility computing

- What if computing was as ubiquitous as the power grid? Just flip a switch, and (presto!) computation!
- Billed for only the resources you consume
- This vision took decades to be achieved!

"If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility... The computer utility could become the basis of a new and important industry."

—1961, John McCarthy (inventor of Lisp, Turing Award winner)

What is Old and What is New?

- New ideas:
 - No up-front cost
 - Fine-grained billing (hourly)
 - Illusion of infinite resources

Why Now for Cloud Computing?

- First .com boom created companies with experience in very large datacenters
 - **₹** Economies of scale − 5-7 times cheaper (going from a 1,000 machine to 50,000 machine datacenter)

Table 2: Economies of scale in 2006 for medium-sized datacenter (≈1000 servers) vs. very large datacenter (≈50,000 servers). [24]

Technology	Cost in Medium-sized DC	Cost in Very Large DC	Ratio
Network	\$95 per Mbit/sec/month	\$13 per Mbit/sec/month	7.1
Storage	\$2.20 per GByte / month	\$0.40 per GByte / month	5.7
Administration	≈140 Servers / Administrator	>1000 Servers / Administrator	7.1

Datacenter

Apple's 1 billion dollar datacenter in North Carolina

- Warehouse for computers
- Design goals
 - Maximum density for minimum space
 - Economy of scale few people managing large numbers of computers
 - Security
 - Network and power redundancy

Datacenter Designs – Traditional Racks

42U rack = 42 "1U" servers

Datacenter Designs – Traditional Racks

Datacenter Design – Innovative

- Shipping containers with 2000+ servers pre-installed?
- Water cooled?

Datacenter Design – Innovative

- Traditional cooling (chilled water or air) is expensive and bad for the environment
- Can we run servers hotter and use ambient air instead?

Why Now for Cloud Computing?

- Pervasive broadband Internet
- Standard hardware/software stack
- Fast x86 / x86-64 virtualization

x86 Virtualization

- Virtual machine monitor controls several guest domains
- Services
 - CPU scheduling
 - Memory allocation
 - Resource sharing
 - Protection/Isolation
- A virtual machine provides the same type of services to a guest domain that a general OS provides to individual processes!

User
Application
(Webserver)

OS #1

User
Application
(Email Server)

OS #2

User
Application
(File Server)

OS #3

Virtual Machine Monitor (aka "Hypervisor") (Examples: Xen, VMWare)

Hardware (Processors, memory, I/O)

Sharing Homogeneous Resources

Figure from http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture02.pdf

Sharing Heterogeneous Resources

Figure from http://www.qatar.cmu.edu/~msakr/15319-s10/lectures/lecture02.pdf

More Virtualization

Virtual Networks

- One physical datacenter network that is shared
 - Each customer thinks that their virtual machines are in the same rack connected to the same private network
 - But in reality, they could be widely separated!
- Why is this useful?

Virtual Disks

- One storage array in datacenter that is shared
 - Each customer OS thinks it is managing its own private disk
 - But in reality, it's just a file spread out across many disks of a large array!
- Why is this useful?

Spectrum of Cloud Designs

- Virtualization provides isolation between customers
 - → Share CPU, memory, disk dynamically
- Tradeoff: Flexibility/portability versus built-in features
 - Amazon EC2
 - Virtualization at the instruction/hardware level
 - Microsoft Azure
 - Virtualization at the bytecode level
 - Google AppEngine
 - Virtualization at the framework level

Amazon EC2

- Amazon sells you one virtual machine instance (or a thousand!)
 - You configure the OS
 - You configure the application software
 - Thin API (related to starting/stopping machines)
 - Virtualization: raw CPU cycles, block-device storage, IP-level connectivity
- Advantages?
- Disadvantages?

1 "unit" = One 1.0 GHz "2007-era" Xeon/Opteron CPU

Amazon EC2 – Instance Types

Node Type	vCPU	ECU	RAM (GB)	Storage (local)	Notes	
t2.micro	1	Variable	1	None	"Free Tier"	
i2.xlarge	4	14	30.5	1x 800GB SSD		
					Greater Storage	
i2.8xlarge	32	104	244	8x 800GB SSD		
r3.large	2	6.5	15	1x 32GB SSD		
					Greater RAM	
r3.8xlarge	32	104	244	2x 320GB SSDs		
c4.large	2	16	3.75	None		
	•••				Greater CPU	
c4.8xlarge	36	132	60	None		
g2.8xlarge	4	32	60	2x 120GB SSD	GPU (4)	

Amazon EC2 – January 2016 Pricing

Can pay upfront to save \$\$ (30-60%) instead of on-demand

(For Linux Instances...)

General Purpose - Current Generation t2.micro \$0.013 per Hour

Compute Optimized - Current Generation

c4.large \$0.105 per Hour c4.8xlarge \$1.675 per Hour

GPU Instances - Current Generation g2.8xlarge \$2.6 per Hour

Memory Optimized - Current Generation

r3.large **\$0.166** per Hour r3.8xlarge **\$2.66** per Hour

Storage Optimized - Current Generation

i2.xlarge \$0.853 per Houri2.8xlarge \$6.82 per Hour

Amazon EC2 – January 2016 Pricing

Why are the Windows instances more expensive?

(For Windows Server 2003, 2008, or 2012 instances)

General Purpose - Current Generation

t2.micro \$0.018 per Hour

Compute Optimized - Current Generation

c4.large \$0.193 per Hour

c4.8xlarge **\$3.091** per Hour

GPU Instances - Current Generation

g2.8xlarge **\$2.878** per Hour

Memory Optimized - Current Generation

r3.large **\$0.291** per Hour

r3.8xlarge \$3.50 per Hour

Storage Optimized - Current Generation

i2.xlarge **\$0.973** per Hour

i2.8xlarge **\$7.782** per Hour

Contact

Spring **28**16

Amazon EC2 – January 2016 Pricing

Data Transfer IN To Amazon EC2 From

Next 524 TB / month

Cloud Computing

\$0.00 Internet per GB \$0.00 Another AWS Region (from any AWS Service) per GB **Data Transfer OUT From Amazon EC2 To Internet** \$0.00 First 1 GB / month per GB \$0.09 Up to 10 TB / month per GB \$0.085 Next 40 TB / month per GB \$0.07 Next 100 TB / month per GB \$0.05 Next 350 TB / month per GB

Microsoft Azure

- Microsoft sells you a "platform"
 - You write your application in .NET, Java, PHP, JavaScript (node.js), C++, or Python and compile to a common language runtime
 - No control over underlying framework and OS beyond what their API allows
- Application model
 - Web role HTTP request comes in, your app runs (on one of ∞ nodes), and then finishes
 - Worker role Background program (not triggered by user)
 - VM role (Amazon EC2 style, gives you a Windows or Linux server VM that can be customized)

Microsoft Azure

- Data storage options
 - Blobs (unstructured data = doc, picture, video, etc..)
 - Tables (non-relational database: key and many values)
 - Imagine a row in Excel, but each row could have different columns
 - Azure SQL: Full-fledged parallel relational SQL database
 - Local storage: Like Amazon's (doesn't move with your VM!)
- Advantages? Disadvantages?

Google AppEngine

Google (also) sells you a "platform" targeted at web apps

- Supports Python, Java, PHP, and Go
- Stateless computation, stateful storage
- Request/reply operation
- Constraints (your app is in a sandbox on frontend servers that appear and disappear)
 - No writing to files
 - No network sockets
 - **7** 60 seconds max execution after a request

Advantages? Disadvantages?

Analogy with Programing Languages

- Assembly or C programming provides you with hardware-level access and fine grained control
- But writing a web app is tedious!
 - Managing sockets, memory, threads, etc...
 - Good libraries help but it's still hard work

Pay per use instead of provisioning for peak usage

Static data center

Data center in the cloud

What if we over-provision?

Static data center

What if we under-provision?

- Note that it is just as important to be able to scale down as it is to scale up why?
- Typical usage case
 - You're a startup and need 10 servers for your average traffic
 - Your website is suddenly mentioned on *Good Morning America!* and traffic spikes 10x
 - 24 hours later, traffic is back to your usual average

- Cheaper to ship photons than electrons
 - Place your datacenter close to cheap power (hydro dams in rural areas?)
 - Link to the national fiber optic network
- Cheaper to go LARGE!

Table 2: Economies of scale in 2006 for medium-sized datacenter (\approx 1000 servers) vs. very large datacenter (\approx 50,000 servers). [24]

Technology	Cost in Medium-sized DC	Cost in Very Large DC	Ratio
Network	\$95 per Mbit/sec/month	\$13 per Mbit/sec/month	7.1
Storage	\$2.20 per GByte / month	\$0.40 per GByte / month	5.7
Administration	≈140 Servers / Administrator	>1000 Servers / Administrator	7.1

Why be a Cloud Vendor?

- Why have Amazon, Google, Microsoft entered this market?
- Amazon and Google
 - Utilize off-peak capacity in datacenter
 - Reuse existing infrastructure and technical know-how
 - Grow datacenters even larger, and achieve even greater economies of scale (which benefits both them and their customers)
- Microsoft
 - Sell .NET tools (defend the franchise!)

- Challenge 1: Availability of Service (avoiding downtime)
- **尽 The Challenges?** (for you as a customer of cloud services)
 - Single point of failure
 - What if your rack fails?
 - What if the entire datacenter is cut offline?
 - What if all of Amazon EC2 goes offline due to common bug?
 - What if Amazon goes out of business?
 - DDOS attacks
- Solutions / Opportunities?
 - Use multiple "availability zones" (AWS terminology)
 - Use multiple cloud providers to provide business continuity
 - Use elasticity to defend against DDOS attack

- **♂** Challenge 2: Data Lock-in
- Why is this a problem? (for you as a customer of cloud services)
 - Your vendor might start raising prices, decrease quality, or go out of business, and you can't easily take your data and go elsewhere
- What can be done about it?
 - Standardized APIs? Build your own cloud?
 - https://www.openstack.org/software/
 - https://www.eucalyptus.com (now HPE "Helion")

- Challenge 3: Data Confidentiality and Auditability
- Why is this a problem? (for you as a customer of cloud services)
 - Who can access my data?
 - How can my data be audited if it is stored outside my organization?
 - Regulatory compliance?
 - Access by foreign governments?
- What can be done about it?
 - Encrypt (storage), encrypt (network/VPN)
 - Storage within country boundaries
 - Have the cloud provider (in the VM itself) guarantee data

Current Efforts - Google

- Challenge 4: Data Transfer Bottlenecks
- Why is this a problem?
 - Limited upload/download bandwidth to cloud (at least, relative to the TBs of data you might like to move)
- What can be done about it?
 - FedEx your hard drives! (Seriously)
 - http://aws.amazon.com/importexport/
 - Amazon ships you a "Snowball" device (rugged container with disks and 10GbE network interface). 50TB for \$200
 - Do all of your data processing internal to the cloud system (i.e. inside Amazon's datacenter)
 - Better network architectures?

What is Snowball? Petabyte scale data transport

Ruggedized case "8.5G Impact" E-ink shipping label 50 TB 10G network

Rain & dust resistant

Tamper-resistant case & electronics

All data encrypted end-to-end

http://www.slideshare.net/AmazonWebServices/aws-october-webinar-series-introducing-aws-import-export-snowball

- Challenge 5: Performance Unpredictability
- Why does this problem exist?
 - CPU and main memory is easy to virtualize (high bandwidth + context switches between users are quick)
 - Disks are hard to virtualize (hard drive bandwidth shared among 10 users is paltry + seek times are high)
- What can be done about it?
 - → SSDs are much nicer (\$\$)
 - More disks = more spindles?
 - Better VM software to manage disks?

- Challenge 6: Scalable Storage
- Why is this a problem?
 - As long as my data is in Amazon's cloud, I'm paying for it, regardless of whether or not I'm actively using it
- What can be done about it?
 - Nothing?
 - Don't keep so much data lying around?

- Challenge 7: Bugs in Large-Scale Distributed Systems
- Why is this a problem?
 - How do you debug a problem that only occurs when you have > 100, > 1000, > 10000 machines working together?
- What can be done about it?
 - Log, log, log! (and have automated log analysis tools)
 - Can the VM help capture information beyond the view of the application?

- Challenge 8: Scaling Quickly
- Why is this a problem?
 - Not every cloud service will automatically scale up/ down resources depending on your current load
- What can be done about it?
 - Better software

Challenge 9: Reputation Fate Sharing (with other customers of your cloud provider)

Why is this a problem?

If some jerk sends spam from an Amazon EC2 instance, those IPs are probably blacklisted for all future customers

What can be done about it?

Can the blacklists adapt?

- Challenge 10: Software Licensing
- Why is this a problem?
 - How many licenses of Windows (or Oracle, etc..) do you need to buy if you run between 10 and 100 concurrent EC2 servers on any given day?
- What can be done about it?
 - Hope the software vendors offer better license terms? (Pay-per-use, bulk sales, etc...)
 - Open-source software?

What does the Cloud Change?

- Application software has to change
- New apps should be written in two pieces
 - Client piece (local) must be useful if disconnected (temporarily) from the cloud
 - Cloud piece (remote)

What does the Cloud Change?

- Infrastructure software has to change
- Should be aware that it is running inside of a virtual machine (i.e. sharing a machine, instead of owning the hardware)
- Integrated billing/accounting system

What does the Cloud Change?

- Hardware has to change
- Larger scale! (Not just one machine, but dozens as the minimum unit)
- Energy efficiency (this was already becoming an issue)
 - Put N% of the CPU, memory, and disks to sleep when not needed (energy proportionality)
- Integrate virtualization into the system? (no such thing as bare hardware anymore?)

Is Every App Suitable for the Cloud?

- What apps are good for the cloud?
 - Web-style apps
 - Desktop apps (e.g. Google docs)
 - Batch processing
- What apps are not good? (or "challenged"?)
 - Jitter-sensitive apps
 - Latency over the Internet
 - Virtualization-imposed latency
 - Bulk data apps (unless the data is already in the cloud)

Public and Private Clouds

Public cloud

- Commercially available in a pay-as-you-go manner
- **Table :** i.e. Amazon EC2

Private cloud

Built by and available for only your company (or government)

Cloud Benefits: Public versus Private

Benefit	Public	Private
Economy of scale	Yes	No
Illusion of infinite resources on-demand	Yes	Unlikely
Eliminate up-front commitment by users*	Yes	No
True fine-grained pay-as-you-go **	Yes	??
Better utilization (workload multiplexing)	Yes	Depends on size**
Better utilization & simplified operations through virtualization	Yes	Yes

^{*} What about nonrecoverable engineering/capital costs?

^{**} Implies ability to meter & incentive to release idle resources

Public, Private, Hybrid Clouds

Public cloud

- Commercially available in a pay-as-you-go manner
- **Table :** i.e. Amazon EC2

Private cloud

Built by and available for only your company (or government)

Hybrid cloud – what's this?

- Using your local (private) computing resources first, but bursting (scaling up) to public cloud resources in periods of high demand
- Strengths and weaknesses?