
ELEC / COMP 177 – Fall 2016

Some slides from Kurose and Ross, Computer Networking, 5th Edition

¡ Project 2, Checkpoint 2
§ Sunday Oct 16th by 11:59pm
§ Parallelism (threads or processes)

¡ Midterm Exam
§ Tuesday Oct 13th 8

¡ Presentation 2
§ “Security and Privacy” (in last 2 years)
§ Topic due Tuesday October 25th

2

3

¡ Will this work for a 30-second socket timeout?
§ Imagine it’s inside your thread/process
§ time.time() is measured in seconds since “start of epoch”

4

start = time.time()
while (time.time() - start) < 30:

Main HTTP loop
Call recv() to get request(s)
Pull off a single request / save extra for next loop
etc…

A nice idea, but NO…
The program will be blocked inside of recv(), waiting in vain for more data.

You’ll never get back to the while loop to check on time.time() again.

¡ my_socket.settimeout(30)
¡ Generates a socket.timeout exception

§ I can be blocked on recv() waiting for client data
§ At some point, let’s give up and consider this

socket “dead” (close it and move on)

¡ Pitfall / confusion:
§ socket.timeout is a subset (specific example)

of socket.error

5

6

client_s.settimeout(30)

try:
raw_data = client_s.recv()

except socket.timeout:
print("Timeout on recv()")
Do something

except socket.error:
print("General error on recv()")
Do something

Check for more specific
exception before
general exception…

¡ Consider the following line:
§ raw_data = my_socket.recv(4096)

¡ Which of the following choices are valid
outcomes?
1. raw_data is exactly 4096 bytes?
2. raw_data is 0 bytes?
3. raw_data is between 0 and 4096 bytes?
4. raw_data is greater than 4096 bytes?

7

¡ POSSIBLE - Result of 4096 bytes
§ OS had “plenty” of data (perhaps more) and gave you

the max amount you requested. Extra data is saved
until next recv() call

¡ POSSIBLE - Result between 0 and 4096 bytes
§ OS had “some” data, and gave you all it had

¡ POSSIBLE - Result of 0 bytes
§ Other endpoint closed socket – no more data!

¡ NOT POSSIBLE - Result > 4096 bytes

8

raw_data = my_socket.recv(4096)

¡ Will this function call in Project 2 give me
1. Exactly 1 HTTP request?
2. Less than 1 HTTP request?
3. More than 1 HTTP request?

9

raw_data = my_socket.recv(4096)

You have NO GUARANTEE
Any of these events could happen!

¡ You got lucky in Project 1
§ Web browser only sends 1 request at a time
§ That request was usually small enough to fix in 4096 bytes
§ You got the full 4096 bytes (or the complete client

request) 99.9% of the time
¡ Things are harder in Project 2

§ The server is busier with multiple sockets
(might get less data than a full request)

§ With pipelining, the client can send several requests at
once (i.e. 4096 bytes can hold several requests)

10

raw_data = my_socket.recv(4096)

¡ So how do I get a single HTTP request
then? (and not less than 1 request, or more
than 1 request?)

11

12

Application Layer

Transport Layer

Network Layer
Link Layer

Physical Layer

TCP UDP

HTTP DNS (many others!)

End-to-End
message
transfer

Sockets

Flow Control Congestion Control

13

¡ Provide logical communication
between application processes
running on different hosts

¡ Transport protocols run in end
systems
§ Send side: breaks app

messages into segments,
passes to network layer

§ Receive side: reassembles
segments into messages,
passes to app layer

¡ More than one transport
protocol available to apps
§ Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

14

¡ Unreliable, unordered delivery
(UDP)
§ No-frills extension of “best-

effort” IP

¡ Reliable, in-order delivery
(TCP)
§ Congestion control
§ Flow control
§ Connection setup

¡ Services not available:
§ Delay guarantees
§ Bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

15

Connectionless Transport

16

¡ “No frills, bare bones”
Internet transport
protocol

¡ “Best effort” service
¡ UDP segments may be:

§ Lost
§ Delivered out of order to

app
¡ Connectionless

§ No handshaking between
UDP sender, receiver

§ Each UDP segment
handled independently of
others

Why is there a UDP?
¡ Need something to provide

port numbers (specific
source/destination
application)

¡ No connection
establishment
(adds delay)

¡ Simple: no connection
state at sender / receiver

¡ Small segment header
¡ No congestion control

§ UDP can blast away as fast as
desired

17

¡ Often used for
streaming
multimedia apps
§ Loss tolerant
§ Rate sensitive

¡ Other UDP uses
§ DNS
§ SNMP

¡ Reliable transfer over
UDP: add reliability at
application layer
§ Application-specific

error recovery!

source port # dest port #

32 bits

Application
data
(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

18

¡ Sender
§ Treat segment contents

as sequence of 16-bit
integers

§ Checksum: addition
(1’s complement sum)
of segment contents

§ Sender puts checksum
value into UDP
checksum field

¡ Receiver
§ Compute checksum of

received segment
§ Check if computed

checksum equals
checksum field value:
▪ NO - error detected
▪ YES - no error detected.

But maybe errors
nonetheless?

Goal: detect errors (e.g., flipped bits) in transmitted segment

19

Stepping through the design of TCP

20

¡ Reliability is important in application, transport, and link layers

¡ Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

21

¡ Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

¡ Reliability is important in application, transport, and link layers

22

¡ Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

¡ Reliability is important in application, transport, and link layers

23

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to app.

24

¡ The plan: Incrementally develop sender / receiver sides of
reliable data transfer protocol (rdt), a fictional protocol
§ TCP is similar to RDT but too complex to describe all at once

¡ Consider only unidirectional data transfer
§ but control info will flow on both directions!

¡ Use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

event
actions

State: When in this
“state”, next state
uniquely determined
by next event

L (uppercase Lambda = empty set)
25

¡ Underlying channel perfectly reliable
§ No bit errors
§ No loss of packets

¡ Separate FSMs for sender, receiver:
§ Sender sends data into underlying channel
§ Receiver reads data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

26

¡ Underlying channel may flip bits in packet
§ Checksum to detect bit errors

¡ But, how do we recover from errors?
§ Acknowledgements (ACKs): receiver explicitly tells

sender that packet received OK
§ Negative acknowledgements (NAKs): receiver explicitly

tells sender that packet had errors
§ Sender retransmits packet on receipt of NAK

¡ New mechanisms in rdt2.0 (beyond rdt1.0):
§ Error detection
§ Receiver feedback

▪ Control msgs (ACK,NAK) go from receiver to sender

27

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

belowsender

receiver

rdt_send(data)

L

28

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

L

29

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

L

30

¡ What happens if
ACK/NAK is
corrupted?
§ Sender doesn’t know

what happened at
receiver!

¡ Can’t just retransmit
§ Receiver might get

duplicate data

¡ Handling duplicates:
§ Sender retransmits current

packet if ACK/NAK garbled
§ Sender adds sequence

number to each packet
§ Receiver discards (doesn’t

deliver) duplicate packet

¡ Stop and wait design
§ Sender sends 1 packet,

then waits for receiver
response

31

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data,
checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

LL

Sequence #!

32

Sequence #!

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

33

Sender:
¡ Seq # added to pkt
¡ Two seq. #’s (0,1) will

suffice. Why?
¡ Must check if received

ACK/NAK corrupted
¡ Twice as many states

§ State must “remember”
whether “current” packet has
sequence number of 0 or 1

Receiver:
¡ Must check if received

packet is duplicate
§ State indicates whether 0 or 1

is expected packet sequence
number

¡ Receiver can not know if its
last ACK/NAK received OK
at sender
§ Packet corruption can affect

ACK/NAK packets…

34

¡ Same functionality as rdt2.1
¡ No NAKs!

§ Receiver instead sends ACK for last packet
received OK

§ Receiver must explicitly include seq # of packet
being ACKed

¡ Duplicate ACK at sender results in same
action as NAK
§ Retransmit current packet

35

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM
fragment

L

36

¡ New assumption
§ Underlying channel can

also lose packets
(data or ACKs)

§ Checksum, seq. #, ACKs,
and retransmissions will
help but are not
sufficient

¡ New approach
§ Sender waits “reasonable”

amount of time for ACK
§ Retransmits if no ACK

received in this time
§ If pkt (or ACK) is just

delayed but not lost:
▪ Retransmission will be

duplicate, but seq. #’s solves
this problem

▪ Receiver must specify seq #
of pkt being ACKed

§ Requires countdown timer

37

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from

above

Wait
for
ACK1

L
rdt_rcv(rcvpkt)

L
L

L
38

39

40

¡ rdt3.0 works, but performance stinks
¡ For 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

¡ U sender: utilization : fraction of time sender busy sending

¡ 1KB packet every 30 msec
§ 33kB/sec throughput over 1 Gbps link
§ Network protocol limits use of physical resources!

U
sender =

.008
30.008

= 0.00027
microsec
onds

L / R
RTT + L / R

=

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans

How long it takes to push
packet out onto wire

41

first packet bit transmitted, t = 0
sender receiver

RTT

last packet bit transmitted, t=L /
R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027
microsec
onds

L / R
RTT + L / R

=

42

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets
§ Range of sequence numbers must be increased
§ Buffering at sender and/or receiver

43

first packet bit transmitted, t=0
sender receiver

RTT

last bit transmitted, t=L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008
microsecon
ds

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

44

45

¡ Full duplex data:
§ Bi-directional data flow in

same connection
§ MSS: maximum segment

size
¡ Connection-oriented:

§ Handshaking (exchange of
control msgs) initializes
sender, receiver state
before data exchange

¡ Flow controlled:
§ Sender will not overwhelm

receiver

¡ Point-to-point:
§ One sender, one receiver

¡ Reliable, in-order byte
steam:
§ No “message boundaries”

¡ Pipelined:
§ TCP congestion and flow

control set window size
¡ Send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

46

47

source port # dest port #

32 bits

application
data
(variable length)

sequence number

acknowledgement number
Receive window

Urg data pointerchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
receiver willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Seq. #’s:
§ Byte stream

“number” of first byte
in segment’s data

ACKs:
§ Seq # of next byte

expected from other
side

§ Cumulative ACK
How does receiver handle

out-of-order segments?
§ TCP spec doesn’t say,

- up to implementer

Host A Host B

User
types
‘C’

host ACKs
receipt
of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

48

¡ Receive side of TCP
connection has a receive
buffer:

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer
space

application
process

49

¡ Application process may be
slow at reading from buffer
¡ What if buffer fills up?

Flow Control:

Prevents sender from
overflowing receiver’s
buffer by transmitting too
much, too fast

Speed matching service:
matching send rate to
receiving application's drain
rate

¡ Suppose TCP receiver
discards out-of-order
segments…

¡ Unused buffer space
= rwnd
= RcvBuffer-[LastByteRcvd - LastByteRead]

¡ Receiver notifies
sender of unused
buffer space
§ Segment header

includes the rwnd value
¡ Sender limits # of

unACKed bytes to
rwnd
§ Guarantees receiver’s

buffer doesn’t overflow

50

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer
space

application
process

rwnd
RcvBuffer

¡ What is congestion?
§ Informally: “too many sources sending too much

data too fast for network to handle”
¡ Different from flow control!
¡ Manifestations

§ Lost packets (buffer overflow at routers)
§ Long delays (queueing in router buffers)

51

¡ Two senders, two
receivers

¡ One router,
infinite buffers

¡ No retransmission
¡ Link BW of R

¡ Large delays
when
congested

¡ Maximum
achievable
throughput

52

unlimited shared
output link buffers

Host A
lin : original data

Host B

lout

R/2

R/2 R/2

¡ One router, finite buffers
¡ Sender retransmission of lost packet

53

finite shared output
link buffers

Host
A

lin : original
data

Host B

lout

l'in : original data, plus
retransmitted data

54

R/2

R/2
lin

l o
ut

b.

R/2

R/2
lin

l o
ut

a.

R/2

R/2
lin

l o
ut

c.

R/4

R/3

¡ Case a: Sender only transmits when it knows buffer space is
available in router (unrealistic)

¡ Case b: Sender retransmits only when packet is known to be lost
§ New cost of congestion: More sender work (retrans) for given

“goodput”
¡ Case c: Assume sender also retransmits when a packet is delayed

(not lost), i.e. a premature timeout (bigger lin’)
§ New cost of congestion: router output link carries multiple copies of

packet

lin
lout=

lin
lout>

lin
lout>

55

¡ Four senders
¡ Multihop paths
¡ Timeout/retransmit

lin
Q: what happens as

and increase?lin

finite shared
output link

buffers

Host A
lin : original data

Host B

lout

l'in : original data, plus
retransmitted data

¡ A new cost of congestion
§ When packet dropped, any upstream transmission

capacity used for that packet was wasted!

56

H
o
s
t
A

H
o
s
t
B

l
o
u
t

¡ End-end congestion
control:
§ No explicit feedback

from network
§ Congestion inferred

from end-system
observed packet loss
and delay

§ Approach taken by TCP

¡ Network-assisted
congestion control:
§ Routers provide

feedback to end systems
§ Single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

§ Explicit rate sender
should send at

57

Two broad approaches to congestion control:

¡ Goal: TCP sender should transmit as fast as
possible, but without congesting network

¡ How do we find the rate just below
congestion level?
§ Decentralized approach – each TCP sender sets its

own rate, based on implicit feedback:
§ ACK indicates segment received (a good thing!)

▪ Network not congested, so increase sending rate

§ Lost segment – assume loss is due to congested
network, so decrease sending rate

58

¡ Probing for bandwidth
§ Increase transmission rate on receipt of ACK, until

eventually loss occurs, then decrease transmission rate

59

ACKs being received,
so increase rate

X

X

X
X

X loss, so decrease rate

se
nd

in
g

ra
te

time

TCP’s
“sawtooth”
behavior

¡ How fast to increase or decrease?

60

¡ UDP is a connectionless datagram service.
§ There is no connection establishment: packets may show

up at any time.
¡ UDP packets are self-contained.
¡ UDP is unreliable:

§ No acknowledgements to indicate delivery of data.
§ Checksums cover the header, and only optionally cover

the data.
§ Contains no mechanism to detect missing or mis-

sequenced packets.
§ No mechanism for automatic retransmission.
§ No mechanism for flow control or congestion control

(sender can overrun receiver or network)

61

¡ TCP is connection-oriented.
§ 3-way handshake used for connection setup

¡ TCP provides a stream-of-bytes service
¡ TCP is reliable:

§ Acknowledgements indicate delivery of data
§ Checksums are used to detect corrupted data
§ Sequence numbers detect missing, or mis-sequenced data
§ Corrupted data is retransmitted after a timeout
§ Mis-sequenced data is re-sequenced
§ (Window-based) Flow control prevents over-run of receiver

¡ TCP uses congestion control to share network capacity
among users

62

