ELEC/COMP 177 —Fall 2014

Computer Networking
=>» Transport Layer (TCP & UDP)

Schedule

Project 3 — Due Thursday October 23

Quiz 4 —Tuesday October 28
Topics: Transport Layer (TCP, UDP)

Presentation 2 — Topic selection due
Thursday October 30"

Introducing the Transport Layer

Application Layer

HTTP DNS (many others!)

Sockets

Transport Layer

End-to-End
message
transfer

Flow Control Congestion Control

TCP UDP

Goal of Transport Layer

Provide logical communication —
between application processes transp-rt._|
networR
running on different hosts
physical
Transport protocols run in end C
systems

Send side: breaks app
messages into segments,
passes to network layer

Receive side: reassembles
segments into messages,

Ba.
passes to app layer transport

More than one transport
protocol available to apps

Internet: TCP and UDP

Internet Transport-layer Protocols

Unreliable, unordered delivery
(UDP)

No-frills extension of “best-
effort” IP

Reliable, in-order delivery
(TCP)

Congestion control
Flow control
Connection setup

Services not available:
Delay guarantees
Bandwidth guarantees

application

network
data link

—|physical

@?

a2
n
dat N
) k
hysicl® networ
Py data link
sical
@,

network &

data link
physical ok
data link ‘.
physical
network
data link - tion
physical network 5
data 'Iink network
. [physical data link
physical
&z (@@é @

UDP — User Datagram Protocol

Connectionless Transport

UDP: User Datagram Protocol [RFC 768]

“No frills, bare bones” Why is there a UDP?
Internet transport Need something to provide
protocol port numbers (specific
“Best effort” service source/destination
UDP segments may be: application)
Lot No connection
_ establishment
Delivered out of order to (adds delay)
app Simple: no connection
Connectionless state at sender / receiver
No handshaking between Small segment header
UDP sender, receiver No congestion control
Each UDP segment UDP can blast away as fast as
handled independently of desired

others

UDP

< 2 bits -

Often used for 3
streami ng Length, in | SOurce port # dest port #
multimedia apps bytes of UDP [length checksum

Loss tolerant segment,

o including

Rate sensitive header
Other UDP uses

DNS Application

SNMP data
Reliable transfer over (message)
UDP: add reliability at

application layer

Application-specific UDP segment format
error recovery!

UDP Checksum

Goal: detect errors (e.g., flipped bits) in transmitted segment

Sender Receiver
Treat segment contents Compute checksum of
as sequence of 16-bit

_ received segment
integers
Checksum: addition

1's complement sum)
E)f segmre)nt contents checksum field value:

Sender puts checksum NO - error detected
value into UDP YES - no error detected.

But maybe errors
nonetheless?

Check if computed
checksum equals

checksum field

Reliable Data Transfer

Stepping through the design of TCP

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

sending receiver
Drocess process
1

l>()re|ic1b|e c:hcurmel)j

application
layer

transport
layer

() provided service

Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

11

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

sending receiver
Drocess process
1

l»()relicuble c:hcurmel)j

application
layer

transport
layer

Junreliable chcmnel);r

(a) provided service (b) service implementation

Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

12

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

-
O
O O
O 5‘ |receiver I
8 —= DrOCEss process
- 1
dt d .
o l»()relicuble c:hcurmel)j rat_send() deliver data()
8_ 0 reliable data reliable data
@A > transfer protocol transfer protocol
% O (sending side) (receiving side)
= udt_send()i [packet | [packet| Irdt rev ()

Junreliable chcmnel)i

(a) provided service (b) service implementation

Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

13

Reliable data transfer: getting started

rdt send () : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side)

deliver data() : called by
rdt to deliver data to app.

/

data Tdeliver_data ()

reliable data

transfer protocol

(receiving side)

udt_send ()} [pocke

packet Irdt_rcv ()

T-b()unrelicjble channel)J

udt send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

14

Intro to Reliable Data Transfer

The plan: Incrementally develop sender [receiver sides of
reliable data transfer protocol (rdt), a fictional protocol
TCP is similar to RDT but too complex to describe all at once
Consider only unidirectional data transfer
but control info will flow on both directions!

Use finite state machines (FSM) to specify
sender, receiver

event causing state transition
actions taken on state transition

State: When in this —_ T
“state”, next state event
uniquely determined actions
by next event)

A (uppercase Lambda = empty set)
15

rdti.o0: Reliable Transfer Over a

Reliable Channel

Underlying channel perfectly reliable
No bit errors

No loss of packets
Separate FSMs for sender, receiver:

Sender sends data into underlying channel
Receiver reads data from underlying channel

7 Wait for) rdt=send(data) y Wait for) rdt_rcv(packet)
call from call from
above packet = make_pkt(data) below extract (packet,data)

udt_send(packet) deliver_data(data)

sender receiver

16

rdt2.0: Channel with Bit Errors

Underlying channel may flip bits in packet

Checksum to detect bit errors
But, how do we recover from errors?

Acknowledgements (ACKSs): receiver explicitly tells
sender that packet received OK

Negative acknowledgements (NAKSs): receiver explicitly
tells sender that packet had errors

Sender retransmits packet on receipt of NAK
New mechanismsin rdt2.0 (beyond rdt1.0):

Error detection

Receiver feedback
Control msgs (ACK,NAK) go from receiver to sender

17

rdt2.0: FSM specification

rdt send(data)
snkpkt = make_pkt(data, checksum)

rdt_rcv(rcvpkt) && receiver
iISNAK(rcvpkt)
Il f rdt_rcv(rcvpkt) &&
czbor:em udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt rcv(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

18

rdt2.0: Operation with No Errors

rdt send(data)
snkpkt = make_pkt(data, checksum)

——— rdt_rcv(rcvpkt) &&

iSNAK K
ISNAK(revpkt) rdt_rcv(rcvpkt) &&
dt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

.

:dt rcv(rcvpkt) && isACK(rcvpkt) * A Nait for

A call from
below

call from
above

d pkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
idt_send(ACK)

19

rdt2.0: Error Scenario

rdt send(data)
snkpkt = make_pkt(data, checksum)

. ' *“ , kt) 88
Wait for Wait for ISNARTCve rdt_rcv(rcvpkt) &&
ACK or udt_send(sndpkt) ‘ corrupt(rcvpkt)

call from

above
di_send(NA)
:dt rcv(rcvpkt) && isACK(rcvpkt) * A Vait for

call from
below

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

)

20

rdt2.0 has a Fatal Flaw!

What happens if ACK/ Handling duplicates:

NAK is corrupted? Sender retransmits current
packet if ACK/NAK garbled

Sender adds sequence
number to each packet

Sender doesn’t know
what happened at
receiver!

Can't just retransmit

Receiver might get
duplicate data

Receiver discards (doesn’t
deliver) duplicate packet

Stop and wait design

Sender sends 1 packet,
then waits for receiver
response

21

rdt2.1: Sender — Handles Garbled ACK/NAKSs

Sequence #!
rdt_send(data) \L 4

sndpkt = make_ pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&
, (corrupt(rcvpkt) ||
‘,QVS',?S{ isSNAK(rcvpkt))
NAK 0 udt_send(sndpkt)

Wait for
call O fro

r above
rdt_rcv(rcvpkt) rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) && notcorrupt(rcvpkt)
&& isACK(revpkt) \ && isSACK(rcvpkt)
A
A
\’/A\Vgi}’[(fgrr Wait for
rdt_rcv(rcvpkt) && NAK 1 Ca;bl\ireom
(corrupt(rcvpkt) ||
isSNAK(rcvpkt)) rdt_send(data)
udt_send(sndpk sndpkt = make_ pkt(1, data, checksum)

t) udt_send(sndpkt) 4 Sequence #!

22

rdt2.1: Receiver — Handles Garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

23

rdt2.1: Discussion

Sender: Receiver:
Seq # added to pkt Must check if received
Two seq. #'s (0,1) will packet is duplicate
suffice. Why? State indicates whether o or 1
Must check if received is expected packet sequence
ACK/NAK corrupted number

Receiver can not know if its
State must “remember” last ACK/NAK received OK
whether “current” packet has at sender

sequence number of o or1 Packet corruption can affect
ACK/NAK packets...

Twice as many states

24

rdt2.2: a NAK-free protocol

Same functionality as rdt2.1
No NAKS!

Receiver instead sends ACK for last packet
received OK

Receiver must explicitly include seq # of packet
being ACKed

Duplicate ACK at sender results in same
action as NAK

Retransmit current packet

rdt2.2: Partial Sender and Receiver

rdt_send(data)
sndpkt = make pkt(0, data, checksum)

. udt_send(sndpkt rdt_rcv(rcvpkt) &&
RN (corrupt(rcvpkt) ||

Wt for Wait for isACK(rcvpkt,1))
above

ACK
udt_send(sndpkt)
sender FSM

0
.. fragment rdt_rev(rcvpkt)
................. && notcorrupt(rcvpkt)

.. && isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
has_seq1(rcvpkt receiver FSM e A
1t send(ondok @ment T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e

&& has seqi(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_ pkt(ACK1, chksum)
udt_send(sndpkt)

26

rdt3.o0: Channels with Errors and Loss

New assumption New approach

Sender waits “reasonable”
amount of time for ACK

Retransmits if no ACK

Underlying channel can
also lose packets

(data or ACKs) received in this time

Checksum, seq. #, ACKs, If pkt (or ACK) is just

and retransmissions will delayed but not lost:

help but are not Retransmission will be

sufficient du.plicate, but seq. #'s solves
this problem

Receiver must specify seq #
of pkt being ACKed

Requires countdown timer

27

rdt3.o Sender

rdt_send(data) rdt_rcv(rcvpkt) &&
sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_sgnd(sndpkt) iSACK(rcvpkt, 1))
rdt_rcv(rcvpkt) \ start_timer A
A (YN
c;/xa(;tf];?)rm timeout
udt_send(sndpkt)
above .
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from

above
/

timeout

udt_send(sndpkt)

start_timer (_/
rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
iISACK(rcvpkt,0))

A

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

28

rdt3.o in Action

sender receiver

sender receiver

send pki0 Pk o
send pki0 %’ 0 PR T revpkio
[CV p ACK send ACKO
]

CK send ACKO
oV ACKO / o d
v -

send pki1 kt send pir| \%
\\ (loss)

rcv pktl

CK o

K

A
A send ACK
rcvACK frmeout
send pkt0 kt I u _
AC cFJIDACKO rcv pkil
sen ACK send ACK1

rcvACK]
send pki0 KT

d) operation with no loss rcv pki0
(@) op A}@/ send ACKO

(b) lost packet

29

rdt3.o in Action

sender receiver sender receiver
send pkio % oV piO send pki0 \M’ v pki0
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pkt1] kT send pkil 7
rcv pkil rcv pktl
ACK send ACK1 send ACK
(loss) X/
timeout
fimeout = pkt 4 resend pktl =
resend pki1 \rCV okil rcv kil
ACK (detect duplicate) rcVACK (detect duplicate)
send ACK1 send pkt0 send ACKT
il
ACK rev pki0 K o send ACKO
send ACKO

(c) lost ACK (d) premature timeout

30

Performance of rdt3.0

rdt3.0 works, but performance stinks
For 1 Gbps link, 15 ms prop. delay, 8ooo bit packet:

L 8000bits , How long it takes to push
== = 8microseconds packet out onto wire

"R 10°bps

U : utilization : fraction of time sender busy sending

sender®
U B L/R ~.008
sender pTTL.L /R ~30.008

1KB packet every 30 msec
33kB/sec throughput over 1 Gbps link
Network protocol limits use of physical resources!

= 0.00027

31

rdt3.0: Stop-and-Wait Operation

sender receiver

first packet bit transmitted, t = 0—
last packet bit transmitted, t=L / Ry

»

—first packet bit arrives
—last packet bit arrives, send
ACK

RTT

ACK arrives, send next,
packet, t =RTT+L/R

gy __ L/R 008

dor™ = = 0.00027
sender RTYT+L/R 30008

32

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets
Range of sequence numbers must be increased
Buffering at sender and/or receiver

data polcke’r—b
| |

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

33

Pipelining: Increased Utilization

sender receiver

first packet bit transmitted, t=0—
last bit transmitted, t=L/ R &

— first packet bit arrives
—last packet bit arrives, send ACK

—last bit of 2" packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next |

packet,t =RTT+L/R _

................... Increase utilization
""""" N / by a factor of 3!

U __3"L/R :% = 0.0008

Sender'_ RTT + L / R 30.008

34

TCP —Transmission Control

Protocol

TC P . OVE I'Vi EW RFCs: 793, 1122, 1323, 2018, 2581

Point-to-point: Full duplex data:
One sender, one receiver Bi-directional data flow in
Reliable, in-order byte same connection
steam: MSS: maximum segment
No “"message boundaries” S1z€

Connection-oriented:

Handshaking (exchange of
control msgs) initializes
sender, receiver state before

data exchange
Flow controlled:

Pipelined:
TCP congestion and flow
control set window size

Send & receive buffers

application application I
I v application Sender will not overwhelm
door“““l‘_—_—" —‘————f‘—————'SOCket receiver
door
TCP TCP
send buffer receive buffer
I—b() [Segment] —» ()—+

36

TCP segment structure

URG: urgent data counting
(generally not used)™_|_SOurce port # dest port # / by bytes
ACK: ACK # . sequence number A/ of data
valid [—ackhawledgement number /| (notsegments!)
head |not
PSH: push datanow |ien used APLI__F Receive window
(generally not used)— | . # bytes
9 ynotuse cheeksum Urg data pointer . .
— receiver willing
RST, SYN, FIN:~ | Opti}%{(variable ength) to accept
connection estab
(setup, teardown
commands) L.
application
Internet/ data
checksum (variable length)

(asin UDP)

37

TCP seq. #'s and ACKs

Seq. #'s:
Byte stream
“number” of first byte
rcre in segment’s data Host ACKs
* receipt of
Seq # of next byte A3, 022 'C, eEhoes
expected from other Seqz79">‘c back ‘C’
side
Cumulative ACK host ACKs
How does receiver handle receipt ,
out-of-order segments? of echoed ~60

\CI
TCP spec doesn't say,
- up to implementer

time

simple telnet scenario

38

TCP Flow Control

Receive side of TCP
connection has a receive

buffer:
LS chnUl:gZZttl)nyfer TCP data | applicgtion
datagrams [space (inbuffen hrocess

Application process may be
slow at reading from buffer
What if buffer fills up?

Flow Control:

Prevents sender from
overflowing receiver’s
buffer by transmitting too
much, too fast

Speed matching service:
matching send rate to
receiving application's drain
rate

39

IP

(currently)

unused buffer Mﬂon

TCP data

datagrams | space

(in buffer) | process

<«— rwnd —
+—— RcvBuffer ——

Suppose TCP receiver
discards out-of-order
segments...

Unused buffer space
= rwnd

— RcvBuffer-[LastByteRcvd - LastByteRead]

TCP Flow Control: How 1t Works

Receiver notifies
sender of unused
buffer space

Segment header
includes the rwnd value

Sender limits # of
unACKed bytes to
rwnd

Guarantees receiver’s
buffer doesn’t overflow

40

Principles of Congestion Control

What is congestion?

Informally: “too many sources sending too much
data too fast for network to handle”

Different from flow control!
Manifestations
Lost packets (buffer overflow at routers)
Long delays (queueing in router buffers)

Causes/costs of Congestion:

Scenario 1

Host A
Two senders, two e e M‘A
receivers i
One router, R | g
infinite buffers - / //_\%
No retransmission i T i e
Link BW of R L / ‘

Large delays

2T 5 when
(@)
5 [0 congested
< © Maximum
achievable
i throughput

42

Causes/costs of Congestion:

Scenario 2

One router, finite buffers
Sender retransmission of lost packet

HostA ;. : original data Mout
A
? " oridi N
& «f— Min:original data, plus 4

| retransmitted data

|
|
Host B finite shared output |

v T lin buffers/_qx_Y
i /L """ 3
. = / i

43

Causes/costs of Congestion:

Scenario 2

Case a: Sender only transmits when it knows buffer space is
available in router (unrealistic)
Case b: Sender retransmits only when packet is known to be lost

New cost of congestion: More sender work (retrans) for given

“goodput”

Case c: Assume sender also retransmits when a packet is delayed
(not lost), i.e. a premature timeout (bigger A,")

New cost of congestion: router output link carries multiple copies of

packet

R/2 _______________________ ;

)\‘Out
P
I
>

R/2

R/2

R/2

R/2

44

Causes/costs of Congestion:

Scenario 3

Four senders Q: what happens as A

' IN
Multihop paths and 7\. increase?
Timeout/retransmit

Host A o 2
_ A\, - original data out

1_4/ M, . original data, plus Lo
i retransmitted data

finite shared
output lin B

45

Causes/costs of Congestion:

Scenario 3

C/2

KouT

Air

A new cost of congestion

When packet dropped, any upstream transmission
capacity used for that packet was wasted!

46

Congestion Control Approaches

Two broad approaches to congestion control:

End-end congestion Network-assisted
control: congestion control:

Routers provide
feedback to end systems
Single bit indicating
congestion (SNA,

No explicit feedback
from network

Congestion inferred

from end-system DECbit, TCP/IP ECN,
observed packet loss ATM)
and delay Explicit rate sender

Approach taken by TCP should send at

47

TCP Congestion Control

Goal: TCP sender should transmit as fast as
possible, but without congesting network
How do we find the rate just below
congestion level?

Decentralized approach —each TCP sender sets its
own rate, based on implicit feedback:

ACK indicates segment received (a good thing!)
Network not congested, so increase sending rate

Lost segment —assume loss is due to congested
network, so decrease sending rate

48

TCP Congestion Control: Bandwidth

Probing

Probing for bandwidth

Increase transmission rate on receipt of ACK, until
eventually loss occurs, then decrease transmission rate

ACKs being received,
so increase rate

X loss, so decrease rate

TCP’s
“sawtooth”
behavior

sending rate

time

How fast to increase or decrease?

49

Summary

User Datagram Protocol (UDP)

Characteristics

UDP is a connectionless datagram service.

There is no connection establishment: packets may show
up at any time.

UDP packets are self-contained.

UDP is unreliable:
No acknowledgements to indicate delivery of data.

Checksums cover the header, and only optionally cover
the data.

Contains no mechanism to detect missing or mis-
sequenced packets.

No mechanism for automatic retransmission.

No mechanism for flow control or congestion control
(sender can overrun receiver or network)

51

TCP Characteristics

TCP is connection-oriented.

3-way handshake used for connection setup

TCP provides a stream-of-bytes service

TCP is reliable:
Acknowledgements indicate delivery of data
Checksums are used to detect corrupted data
Sequence numbers detect missing, or mis-sequenced data
Corrupted data is retransmitted after a timeout
Mis-sequenced data is re-sequenced

(Window-based) Flow control prevents over-run of receiver
TCP uses congestion control to share network capacity
among users

52

