ECPE / COMP 177 Fall 2014

Computer Networking

Logistics

- Instructor: Dr. Jeff Shafer
 - Email: jshafer at pacific dot edu
 - Office: Anderson 205
 - Office hours (posted on my door)
 - Monday: 1:00-3:00pm
 - Thursday: 1:00-3:00pm
 - ... plus whenever my office door is open

Logistics

- Lecture
 - When: Tuesday / Thursday, 5pm-6:30pm
 - Where: Chambers 115 (might change...)
- Lab
 - When: Monday, 3:30-6:30pm
 - Where: Baun 214
 - Lab start date: Mon Sept 8th

Logistics

- Course websites:
 - http://ecs-network.serv.pacific.edu/ecpe-177
 - Slides, syllabus, schedule, assignments, and more
 - http://pacific.rsmart.com/
 - Sakai for assignment submission and emails only
 - Should auto-signup if enrolled in course

Pre-Requisites

- COMP 53 Data structures
 - Programming in high level language
 - Basic data structures, arrays, pointers, functions, system calls, ...
- ECPE 170 Computer Systems and Networks
 - Linux / command-line usage
 - C programming

Course Vision

What do I, as an **application** programmer, need to understand about computer networks (including software and hardware both on your computer and elsewhere on the network) in order to write efficient, high-performing programs?

Course Format

- Labs 10%
 - Applying theoretical concepts to real-world network equipment (Cisco routers and switches)
- Lab Practical Exam 10%

Course Format

- In-class Presentations 8%
 - Two presentations
- Quizzes 12%
 - Six quizzes throughout the semester
 - Posted on class schedule
 - 15 minutes max
 - In lieu of a midterm and final exam

Course Format

- Projects 60%
 - 6 programming projects using network sockets
 - Individual
 - Implementation platform: Linux
 - Python (3.4+)
- Past projects:
 - Web server (basic) + web server (parallel)
 - Latency / bandwidth measurement tool
 - Instant messenger / file sharing client

Survey

- Will have in-class project work days throughout the semester
- A laptop to bring to class would be ideal
 - Must be able to run Linux (either in a virtual machine, or dual boot)
- Do you have a laptop?
- Do we need an alternate plan? (USB key booting...)

Questions?

Intro to Networking

- What is the Internet?
- Network edge -vs- Network core
- Protocol layers

Networks are Ubiquitous

- What good is a computer when the network is down?
 - I just keep hitting refresh on my web browser until something happens...
- What good is my iPhone with no AT&T / Verizon service?
- What good is a TV without on-demand Netflix streaming?

What's the Internet: High Level View

PC

server

wireless laptop

cellular handheld

access points wired links

Hosts (end systems)

- Millions of connected computing devices
- Running network apps

Communication links

- Fiber, copper, radio, satellite
- Transmission rate = bandwidth

Routers

 Forward packets (chunks of data) between links

What's the Internet: High Level View

Protocols

- Control sending and receiving of messages
- e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet standards
 - Who makes (some of) the protocols?
 - IETF: Internet Engineering Task Force
 - RFC: Request for comments
- Internet: "network of networks"
 - Loosely hierarchical
 - Public Internet versus private intranet

Intro to Networking

- What is the Internet?
- Network edge -vs- Network core
- Protocol layers

A Closer Look at Network Structure

Network edge

- Applications and hosts
- Access networks and physical media
 - Wired, wireless communication links
- Network core
 - Interconnected routers
 - Network of networks

Why is it Called the Edge?

The Network Edge

- End systems (hosts) at edge
 - Run application programs
- Two models of applications
 - Client/server
 - Peer-to-Peer (P2P)
 - What's the difference?
- Client/server model
 - Client host requests data from always-on server (e.g. web, email, ...)
- Peer-to-peer model
 - Minimal (or no) use of dedicated servers (e.g. Skype, BitTorrent)

The Network Core

- Mesh of interconnected routers
- Fundamental question: how is data transferred through mesh?
 - Circuit switching
 - Dedicated circuit per call
 - "Classic" telephone network
 - Packet-switching:
 - Data sent thru mesh in discrete "chunks"

Network Core: Packet Switching

- Each end-end data stream divided into packets
 - User A, B packets share network resources
 - Each packet uses full link bandwidth
 - Resources used as needed

Bandwidth division into "pieces"

Dedicated allocation

Resource reservation

- Resource contention
 - Aggregate resource demand can exceed amount available
 - Congestion: packets must wait in queue
- Store and forward: packets move one hop at a time
 - Receive complete packet before forwarding

Packet Switching: Statistical Multiplexing

- Sequence of A & B packets does not have fixed pattern, bandwidth shared on demand ⇒ statistical multiplexing.
- Contrast against circuit switching / time-division multiplexing
 - Each host gets same slot (fixed pattern)

Packet Switching vs Circuit Switching

Packet switching allows more users to use network!

- 1 Mb/s link
- Each user:
 - 100 kb/s when "active"
 - Active 10% of time
- Circuit-switching:
 - 10 users max
- Packet switching:
 - With 35 users, probability > 10 active at same time is less than .0004

Packet Switching vs Circuit Switching

- Is packet switching perfect in all situations?
 - (Think about your own experiences)
- Great for bursty data
 - Resource sharing
 - Simpler, no call setup
- Less great during excessive congestion: packet delay / loss
 - Protocols needed for reliable data transfer and congestion control
- Some applications really want circuit-like behavior
 - Streaming video, streaming audio, interactive games, ...
 - If streaming video data arrives late, it is useless
 - Bandwidth / latency (delay) guarantees needed
 - Still an unsolved problem!

- Roughly hierarchical
- At center: "tier-1" ISPs with national/international coverage
 - Treat each other as equals
 - Examples: Sprint, Cogent, NTT, L3, Verizon, AT&T...

Tier-1 ISP: e.g., Sprint

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

- "Tier-3" ISPs and local ISPs
 - last hop ("access") network (closest to end systems)

A packet passes through many networks

Intro to Networking

- What is the Internet?
- Network edge -vs- Network core
- Protocol layers

What's a Protocol?

HUMAN PROTOCOLS

- "What's the time?"
- "I have a question"
- Introductions

NETWORK PROTOCOLS

- Machines rather than humans
- All communication activity in Internet governed by protocols
- Protocols (human and computer!) define
 - Format of message
 - Order of messages sent/received on network
 - Actions taken after sending/receiving message

What's a Protocol?

Layers of Protocols

- Networks are complex with many pieces
 - Hosts
 - Routers
 - Links of various media
 - Applications
 - Protocols
 - Hardware, software

- We divide network functions into "layers"
 - Easier to understand and discuss role of various devices

Why Layering?

- Human Understanding / Discussion
 - Dealing with complex systems
 - Explicit structure show relationship of between components
- Modularization eases maintenance and system updates
 - Can change how a layer is implemented without modifying other layers (change is transparent)
 - e.g., change in gate procedure doesn't affect rest of system

Internet Protocol Stack

- Application: supporting network applications
 - FTP, SMTP, HTTP
- Transport: process-process data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, routing protocols
- Link: data transfer between neighboring network elements
 - Ethernet
- Physical: bits "on the wire"

application

transport

network

link

physical

"Magic" of the Internet

- TCP: Reliable, in-order delivery
- IP: Un-reliable, order not guaranteed
- Magic
 - TCP is built on top of IP!
- Great clown analogy by Joel Spolsky
 http://www.joelonsoftware.com/articles/LeakyAbstractions.html

Clown Delivery

Need to move clowns from Broadway to Hollywood for a new job

Broadway, NYC

Clown Delivery – Problems?

Many cars, many clowns
Bad things are guaranteed to
happen to at least *some* of them

Clown Delivery – Problems?

People in Hollywood get frustrated – It's hard to make movies with clowns in this condition!

Clown Delivery - Solution

- New company
 - Hollywood Express
- Guarantees that all clowns
 - (1) Arrive
 - (2) In Order
 - (3) In Perfect Condition
- Mishap? Call and request clown's twin brother be sent immediately

UFO crash in Nevada blocks highway?

- Clowns re-routed via Arizona
 - Director never even hears about the UFO crash
 - Clowns arrive a little more slowly

Networking Abstraction

- TCP provides a similar reliable delivery service for IP
- Abstraction has its limits
 - Ethernet cable chewed through by cat?
 - No useful error message for that problem!
 - The abstraction is "leaky" – it couldn't save the user from learning about the chewed cable

Introduction: Summary

- Today's brief overview
 - Internet overview
 - What's a protocol?
 - Network edge vs Network core
 - Protocol layers
- Rest of the semester: more depth!