.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

MIPS Assembly
(Functions)

Lab Schedule

Activities Assignments Due
Monday | Sunday Apr 14t
: E:bc‘l‘i“ MIPS Functions A Lab 11 due by 11:59pm
Wednesday Wednesday Apr 24t
?A Discuss: 2 Lab 12 due by 11:59pm

MIPS random numbers
MIPS floating-point sqrt()
2 Lab 11l

Friday
2 Llab11

MIPS Functions

Computer Systems and Networks Spring 2013

Function Requirements?

What happens when we call a function?

1. Save function arguments in standard location where
function can find them

2. Save current program location to return to later
(the “Program Counter” register)

3. Jump to the function location
4. Function runs using saved arguments

5. Function produces output (return value) and saves it
in standard location

6. Jump to original program location (return)
Technically, +1 instruction

Function Requirements

Can a function change local variables of its calling
function?

No! The function operates in its own “bubble”

What happens if the function changes $s0 which
was also used by the calling function?

Problem! Your function has corrupted the calling
function

Functions in Assembly

In assembly, you must do all the background
work for functions that the compiler did
automatically in a higher level language

Computer Systems and Networks Spring 2013

Registers

Name
Szero

Ss0-$s7

St0-$t9

Sa0-$a3
Sv0-Svil
Sra

Ssp

Use
Constant value: ZERO

Local variables
(Convention: These are saved if a function needs to re-use them)

Temporary results
(Convention: These are not saved if a function needs to re-use them)

Arguments to pass to function (max of 4)
Return value to obtain from function (max of 2) 4/@

Return address of function [W

®

Stack pointer (current top of stack)

More Jumps

Jump and Link
(side effect: Sra stores address of next instruction)

jal <destination>

Use this to call a function!

Jump Register
(destination address is stored in <regl>

jr <regl>

Use this to return from a function!

Task : Write Code

#include <stdio.h>
Place arguments

int function (int a); in $ao_$a3

int main ()

(Place return values
int x=5; in $Sv0-5Sv1
int vy;
y = function (x); Return address saved

| | automatically in Sra
printf ("y=%i\n", vy);

return 0; lgnore the stack for this
} example. (Thus, the function
int function (int a) will destroy registers used
{ by calling function)

return 3*a+5;

}

10
I S,

Simple routine to demo functions
NOT using a stack in this example.
Thus, the function does not preserve values
of calling function!
oo F -
.text # FUNCTION: int fun(int a)
Arguments are stored in $al
.globl main # Return value is stored in $vO0
main: # Return address is stored in $ra (put there by jal instruction)
Register assignments # Typical function operation is:
$s0 = x
$sl =y fun: # Do the function math
1i $s0, 3
Initialize registers mul $s1,$s0,%a0 # sl = 3*$a0 (i.e. 3*a)
1w $s0, x # Reg $s0 = x addi $s1,$sl1,5 # 3%a+5
1w $sl, vy # Reg $sl1 =y
Save the return value in $v0
Call function move $v0,$sl
move $a0, $s0 # Argument 1: x ($s0)
jal fun # Save current PC in $ra, and jump to fun # Return from function
move $s1,$v0 # Return value saved in $v0. This is y ($sl) jr Sra # Jump to addr stored in Sra
Print msgl B o
1i sv0, 4 # print string syscall code = 4
la $al0, msgl # Start .data segment (datal!l)
syscall .data
x: .word 5
Print result (y) y: .word 0
1i Svo,1 # print int syscall code = 1 msgl: .asciiz "y="
move $a0, $sil # Load integer to print in $a0 1€ Lasciiz "\n"
syscall
Print newline
1i sv0, 4 # print string syscall code = 4
la $a0, 1f B
syscall
Exit
1i $v0,10 # exit
syscall
Computer Systems and Networks Spring 2013

Preserving Registers

What if we don’t want to destroy registers used by
the calling function?

Need to save those registers somewhere
while our function runs (like memory!)

A stack is a good structure for this

The Stack

. Ssp —>
Stack is a data structure stored Memory

in memory

Ssp (“Stack Pointer”) points to
top of stack

72 Butstack grows down in
memory!

Example

?” Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N 3D

Pop (4 from stack)

The Stack

Stack is a data structure stored

Ssp (“Stack Pointer”) points to
top of stack

72 Butstack grows down in
memory!

Example

?” Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N 3D

Pop (4 from stack)

The Stack

Stack is a data structure stored
in memory

Ssp (“Stack Pointer”) points to
top of stack

72 Butstack grows down in
memory!

Example

?” Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N 3D

Pop (4 from stack)

The Stack

Stack is a data structure stored

Ssp (“Stack Pointer”) points to
top of stack

72 Butstack grows down in
memory!

Example

?” Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N 3D

Pop (4 from stack)

The Stack

. Ssp —>
Stack is a data structure stored Memory

in memory

Ssp (“Stack Pointer”) points to
top of stack

72 Butstack grows down in
memory!

Example

2 Add 4 to stack
Add 5 to stack
Pop

N 3D

Pop

The Stack

How would we modify previous solution to use a
stack?

18
I S,

Simple routine to demo functions
NOT using a stack in this example.
Thus, the function does not preserve values
of calling function!
oo oo
-text # FUNCTION: int fun(int a)
Arguments are stored in $al
. .globl main # Return value is stored in $vO0
main: # Return address is stored in $ra (put there by jal instruction)
Register assignments # Typical function operation is:
$s0 = x
$sl =y fun: # This function overwrites $s0 and $sl
We should save those on the stack
Initialize registers # This is PUSH’ing onto the stack
1w $s0, x # Reg $s0 = x addi $sp,$sp,-4 # Adjust stack pointer
1w $sl, y # Reg $sl =y sw $s0,0($sp) # Save $s0
addi $sp,$sp,-4 # Adjust stack pointer
Call function sw $s1,0($sp) # Save $sl
move $a0, $s0 # Argument 1l: x ($s0)
jal fun # Save current PC in $ra, and jump to fun # Do the function math
move $sl,$v0 # Return value saved in $v0. This is y ($sl) 1i $s0, 3
mul $s1,$s0,%a0 # s1 = 3*3a0 (i.e. 3*a)
Print msgl addi $sl,$sl1,5 # 3*a+5
1i Sv0, 4 # print string syscall code = 4
la $al0, msgl # Save the return value in $vO0
syscall move $v0, $sl
Print result (y) # Restore saved register values from stack in opposite order
1i Sv0, 1 # print int syscall code = 1 # This is POP’ing from stack
move $a0, $sl # Load integer to print in $a0 1w $s1,0($sp) # Restore $sl
syscall addi $sp,$sp,4 # Adjust stack pointer
1w $s0,0($sp) # Restore $s0
Print newline addi $sp,$sp,4 # Adjust stack pointer
1i Sv0,4 # print string syscall code = 4
la $a0, 1f # Return from function
syscall jr Sra # Jump to addr stored in $ra
Exit o
1i sv0,10 # exit
syscall # Start .data segment (data!)
.data
X .word 5
y: .word O
msgl: .asciiz "y="
1f: .asciiz "\n"
Computer Systems and Networks Spring 2013

