

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Endianness

Lab Schedule

Activities

- 7 This Week
 - **7** Lab 9 − Endianness
- Next Week and Beyond
 - Assembly Programming (Labs 10 & 11)

Assignments Due

- Sunday Mar 24th
 - Lab 9 due by 11:59pm
- Wednesday Apr 3rd
 - **7** Lab 10 due by 11:59pm

Endianness

- In typical computer memory, each address (location) stores one byte
- If we have a one-byte integer, how is that stored in memory?
- If we have a two-byte integer, how is that stored in memory?
- If we have a four-byte integer, how is that stored in memory?

Endianness = Byte Ordering

Endianness Example

- **32-bit hexadecimal number** 0x12345678
- Composed of 4 bytes:
 0x12 0x34 0x56 0x78
 (MSB) (LSB)
- Two possible arrangements:

Address	"Option A"	"Option B"	
0	0x12	0x78	
1	0x34	0x56	
2	0x56	0x34	
3	0x78	0x12	

Endianness Example

- **32-bit hexadecimal number** 0x12345678
- Composed of 4 bytes:
 0x12 0x34 0x56 0x78
 (MSB) (LSB)
- Two possible arrangements:
 - Big Endian
 - Z Little Endian

Address	Big Endian	Little Endian
0	0x12 (MSB)	0x78 (LSB)
1	0x34	0x56
2	0x56	0x34
3	0x78	0x12

Endianness

- How is DEADBEEF₁₆ stored in little and big endian formats at address 21C₁₆?
 - Little endian

$$21E_{16} = AD_{16}$$

$$7$$
 21F₁₆=DE₁₆

Big endian

$$7$$
 21C₁₆=DE₁₆

$$21E_{16} = BE_{16}$$

Big Endian –vs– Little Endian

Big-Endian CPU

- Most significant byte (MSB) comes first (stored in lower memory address)
- Examples
 - Motorola 68000
 - Java virtual machine
 - IBM PowerPC (by default, can also be little endian)

Little-Endian CPU

- Least significant byte (LSB) comes first (stored in lower memory addresses)
- Examples
 - **→** Intel x86/x86-64
 - DEC Alpha
 - ARM (by default, also can be big endian)

Etymology of "Endiann"

- Origin in 1980s
- Reference to Swift's Gulliver's Travels, in which the Lilliputians were divided into two camps:
 - Those who ate their eggs by opening the 'big' end
 - Those who ate them by opening the 'little' end
- In other words, a trivial distinction

Do I Care?

- When do I need to care that some computers are big-endian and others are little endian?
 - What happens if I open big-endian data on a little-endian computer?
- Endianness must be considered whenever you are sharing data between different computer systems
 - Reading/writing data files to <u>disk</u>
 - Reading/writing data files to <u>network</u>

Best Practices

- Pick one format and stick with it!
 - **T** Example: Data sent over the network will always be in big-endian format regardless of who sends it
 - Networks are big-endian "by tradition"
 - Example: Data written to disk will always be in littleendian format regardless of who writes it
- Convert between data storage/transfer format and internal representation as needed
 - Example: Little-endian machines convert to big-endian before sending data onto the network (and convert back upon receiving data from the network)

Examples in Industry

Little-Endian Format		Big-Endian Format		Variable or Bi-Endian Format		
ВМР	(Windows* & OS/2)	PSD	(Adobe Photoshop*)	DXF	(AutoCAD*)	
GIF		IMG	(GEM Raster*)	PS	(Postscript*, 8 bit	
FLI	(Autodesk Animator*)	JPEG,	JPG		interpreted text, no Endian issue)	
PCX	(PC Paintbrush*)	MacPa	int	POV	(Persistence of	
QTM	(MAC Quicktime*)	SGI	(Silicon Graphics*)		Visionraytracer*)	
RTF	(Rich Text Format)	Sun Raster		RIFF	(WAV & AVI*)	
		WPG	(WordPerfect*)	TIFF		
				XWD	(X Window Dump*)	
Bus Protocols		Network Protocols		Bus Protocols		
Infiniband		TCP/IP		GMII	(8 bit wide bus, no	
PCI Express		UDP			Endian issue)	
PCI-32/PCI-64						
USB						

Table 2- Common file formats

Lab 9

- Lab 9 also involves lots of benchmarking
 - Comparing performance of several different algorithms that accomplish the same task
- Why is is important to run these benchmarks on an otherwise idle system, and not switch backand-forth to other programs while the test runs?