.

Computer Systems and Networks
ECPE 170 — Jeff Shafer — University of the Pacific

Build Tools
+ Makefiles

Activities
7 Today

72 Intro to Build Tools and
Makefiles

? Lab 3 -CProgramming

7 Monday
2 Lab 3 -CProgramming

Computer Systems and Networks

Lab Schedule

Assignments Due

7 Monday, Feb 4th
Lab Report for Lab 3 due

e

by 11:59pm

71 Submit via Mercurial

Spring 2013

Person of the Day: Richard Stallman

Computer Systems and Networks

Founder of
72 GNU project — “GNU’s not Unix”
v | Free Software Foundation

Author
72 GNU C Compiler (GCC)
v | Emacs text editor

GNU Manifesto
1. Freedom to run a program for any purpose

2. Freedom to study the mechanics of the
program and modify it

3. Freedom to redistribute copies

Freedom to improve and change modified
versions for public use

Spring 2013

Person of the Day: Richard Stallman

Computer Systems and Networks

.

“Steve Jobs, the pioneer of the computer as a
jail made cool, designed to sever fools from
their freedom, has died.

As Chicago Mayor Harold Washington said of
the corrupt former Mayor Daley, "I'm not glad
he's dead, but I'm glad he's gone." Nobody
deserves to have to die — not Jobs, not Mr.
Bill, not even people guilty of bigger evils than
theirs. But we all deserve the end of Jobs'
malign influence on people's computing.

Unfortunately, that influence continues
despite his absence. We can only hope his
successors, as they attempt to carry on his
legacy, will be less effective.”

72 Richard Stallman, 10/6/2011

Spring 2013

Toolchain

Computer Systems and Networks Spring 2013

#include <stdio.h>

int main(void)

{
printf ("hello, world\n");

return 0;

unix> ./program
hello, world

Behind the Scenes

Motivating Question

7 What really happens between typing in the “Hello
Word” program, and seeing the output on the
console?

Pre-Processor

Think of this as a “find and replace” wizard for your source code

Include header files
? Literally insert .h file lines into .c file

Macro expansion
72 Macro = fragment of C code
#define IS POSITIVE(x) (x > 0)
? Preprocessor replaces macro with original definition in source code

Conditional compilation
72 Include or exclude parts of the program
» #ifdef CONTROL

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

MY CODE’S COMPILING.

HEY! GETBACK
TOWoRK. ./

Compiler

Basic goal
72 Input: High-level language source code
?2 Output: Machine code for processor family

6 steps to accomplish transformation

Steps 1-3 — source code analysis:

1. Lexical analysis extracts tokens, e.g., reserved words and
variables

2. Syntax analysis (parsing) checks statement construction

3. Semantic analysis checks data types and the validity of
operators

Compiler Operation

Steps 4-6 — Synthesis phases:

4. Intermediate code generation creates three address code
(“fake assembly code”) to facilitate optimization and
translation

5. Optimization creates (real) assembly code while taking
into account architectural features that can make the
code efficient

6. Code generation creates binary code from the optimized
assembly code

We write these steps as separate modules

? Benefit: Compilers can be written for various CPU
architectures by rewriting only the last two modules

Compiler Operation

Semantic
Analyzer

Intermediate |
Code
Generator

Parse
Tree

B” (float) 6

Code
Optimizer

A=B+6.0
Intermediate Code

Code
Generator

LOAD 0A2
ADD 0A6
STORE 0A0

Optimized Code

Why So Many Compilation Steps?

We don’t just care about 1 language or 1 processor family!

C x86
C++ x86-64
Objective-C ARM
Fortran PowerPC

Ada 68000
Others... MIPS

(and many more!)

Linker

Real programs are typically written with multiple
source files and many subroutines

? Each file is assembled separately

72 But we need some way to join everything together
into a single executable file

This is the job of the linker (aka “link editor”)
72 Input — many files with binary machine code

Output —single file with all of the necessary binary
machine code

Linker + Loader

CALL ProcA
MyProg.obj MyProg.exe
(Main Program)
CALL ProcC CALL ProcA
CALL ProcB CALL ProcC
CALL ProcB
ProcCobj . 5 Linker —> —> Loader
......... '7 4
Proce ProcA
ProcB | ProcB
. ProcC
ProcB.obj | ProcA
I

.-+ ProcA.obj

Result: Program binary (saved on disk)

11011101010000001010000001101110101000
00010100000011011101010000001010000001
10111010100000010100000011011101010000
00101000000110111010100000010100000011
01110101000000101000000110111010100000
01010000001101110101000000101000000110
11101010000001010000001101110101000000
10100000011011101010000001010000001101
11010100000010100000011011101010000001

Shell /| GUI

User instructs computer to run program
2 Shell command?
A Mouse / keyboard action in GUI?

Operating System

Security: OK to run file?

Memory management: Find space and create new
virtual memory region for this program

Filesystem: Retrieve program binary code from disk
Loader: Place program binary code into memory
Scheduler: Find CPU time for program to run

Context switch — Program starts running

19

Makefiles — Lab 3

Computer Systems and Networks Spring 2013

Makefile

Goal: Compile our program with one command:

unix> make

Challenge
? Every program is different!

? Different source files, different compilers / settings,
different external libraries, etc...

A Makefile is a text file that specifies how to compile
your program

72 The make utility reads the Makefile
2 You'll learn how this file works in Lab 3

