ELEC / COMP 177 – Fall 2013

# Computer Networking → Internet Protocol (IP)

Some slides from Kurose and Ross, Computer Networking, 5<sup>th</sup> Edition

# Upcoming Schedule

- Presentation 2 Privacy/Security
  - Discuss requirements...
  - Topic Approval Tuesday, Nov 5<sup>th</sup>
  - Presentations Nov 12<sup>th</sup> and Nov 14<sup>th</sup>
    - Upload slides to Sakai by midnight on Nov 11<sup>th</sup>

# **Upcoming Schedule**

- Project 3 Network Tester, Part One
  - Work day: Tuesday Oct 29<sup>th</sup>
  - Due Thursday, October 31<sup>st</sup> by 11:55pm

# Network Layer – IP

# Why not just use Ethernet?

- Most computer systems use Ethernet networking
- Ethernet provides facilities to
  - Locate computers
  - Forward packets directly
  - Prevent loops
  - **...**
- What are the drawbacks of Ethernet for global communication?

### **Ethernet Drawbacks**

- Locating computers
  - Do we really want to broadcast across the Internet?
- Preventing loops
  - Do we really want to rebuild an Internet-wide spanning tree whenever the topology changes?
  - Do we really want packets to live forever if loops remain?
- Unreachable computers
  - What happens if the destination is unreachable?
  - I.e., it doesn't exist, is turned off, is broken, ...

### The Internet Protocol

- Datagram
  - Each packet is individually routed
  - Packets may be fragmented or duplicated
    - Due to underlying networks
- Connectionless
  - No guarantee of delivery in sequence

- Unreliable
  - No guarantee of delivery
  - No guarantee of integrity of data
- Best effort
  - Only drop packets when necessary
  - No time guarantee for delivery

# An IP Datagram

| 1 byte                         |                       | 1 byte          | 1 byte 1 byt    |                 | 1 byte |  |  |
|--------------------------------|-----------------------|-----------------|-----------------|-----------------|--------|--|--|
| Version                        | HdrLen                | Type of Service | Total Length    |                 |        |  |  |
| Identification                 |                       |                 | Flags           | Fragment Offset |        |  |  |
| Time-To-                       | Time-To-Live Protocol |                 | Header Checksum |                 |        |  |  |
| Source IF                      | Source IP Address     |                 |                 |                 |        |  |  |
| Destination IP Address         |                       |                 |                 |                 |        |  |  |
| Options and padding (optional) |                       |                 |                 |                 |        |  |  |
| Payload                        |                       |                 |                 |                 |        |  |  |

### **IP Version**



- IPv4 or IPv6
  - Also other, uncommon, options

### Time-To-Live



- "Hop count" decrement each hop
- Discard datagrams with o TTL

### **IP: Time-to-Live**

- Sender sets a TTL value for each datagram
- Each router decrements the TTL
- When the TTL reaches o
  - The router drops the datagram
  - The router sends an ICMP error (more later) to the sender
- Effectively a "maximum hop count"
- Why is this useful / necessary?

### **Protocol**



- What is encapsulated in this IP datagram?
  - 1 = ICMP, 6 = TCP, 17 = UDP, etc...

### **IP Addresses**



IP address of source and destination

# IP encapsulated in Ethernet

| Destination MAC Address |                    |                        |        |                 |  |  |
|-------------------------|--------------------|------------------------|--------|-----------------|--|--|
| Destination MAC Address |                    | Source MAC Address     |        |                 |  |  |
| Source                  | Source MAC Address |                        |        |                 |  |  |
| Type (oxo8oo)           |                    | Version                | HdrLen | Type of Service |  |  |
| Total Length            |                    | Identification         |        |                 |  |  |
| Flags                   | Fragment Offset    | Time-To-Live           |        | Protocol        |  |  |
| Header Checksum         |                    | Source IP Address      |        |                 |  |  |
| Source IP Address       |                    | Destination IP Address |        |                 |  |  |
| Destination IP Address  |                    | Options and Padding    |        |                 |  |  |
| Options and Padding     |                    | Payload                |        |                 |  |  |
| Payload                 |                    |                        |        |                 |  |  |
| Ethernet CRC            |                    |                        |        |                 |  |  |

## **Routing Between LANs**



(1) A (1) transmits to L (2) using IP. Ethernet frame destination is <u>router</u>

(3) Router uses IP protocol to forward data. Eth: update src/dst/crc IP: update TTL/checksum

#### Frame:

| EDA (E) | ESA (A) | 0080x0 | IPDA (2) | IPSA (1) |
|---------|---------|--------|----------|----------|
|---------|---------|--------|----------|----------|

(2) Switch forwards frame to router

#### Frame:

| EDA (L) | ESA (G) | 0x0800 | IPDA (2) | IPSA (1) |
|---------|---------|--------|----------|----------|
|---------|---------|--------|----------|----------|

(4) Switch forwards frame to destination

# **IP Address Format**

### **IP Addresses**

- IP version 4 addresses are 32-bits
  - Version 6 address are 128 bits
- Every network interface has at least one IP address
  - A computer might have 2 or more IP addresses
  - A router has many IP addresses
  - These addresses can be assigned statically or dynamically
- IP addresses are always in big-endian byte order (network byte order)
  - True in general for any integer transferred in a packet header from one machine to another
    - E.g., the port number used to identify a TCP connection

### **IP Address Format**

- IPv4 addresses are usually displayed in dotted decimal notation
  - Each byte represented by decimal value
  - Bytes are separated by a period
  - IP address 0x8002C2F2 = 128.2.194.242
- IP addresses are hierarchical
  - Address is composed of a network ID and a host ID
  - www.pacific.edu: 138.9.110.12

### **IP Address Structure**

IPv4 Address space (originally) divided into classes:

| _       | 0123                                 | 8      | 16    | 3       | 24      | 31 |                        |
|---------|--------------------------------------|--------|-------|---------|---------|----|------------------------|
| Class A | 0 Net I                              | D      |       | Host ID |         |    | 2 <sup>24</sup> hosts! |
| Class B | 10                                   | Net ID |       | Но      | st ID   |    | 2 <sup>16</sup> hosts! |
| Class C | 1 1 0                                | N      | et ID |         | Host ID | )  | 2 <sup>8</sup> hosts!  |
| Class D | 1 1 1 0 Multicast address            |        |       |         |         |    |                        |
| Class E | 1 1 1 1     Reserved for experiments |        |       |         |         |    |                        |

- Special IP addresses
  - Loop-back address: 127.0.0.1
  - Unrouted (private) IP addresses:
    - **1**0.0.0.0 **- 1**0.255.255.255
    - **172.16.0.0 172.31.255.255**
    - 192.168.0.0 192.168.255.255

# A Joke



http://xkcd.com/742/

# Subnetting

- Divide the network within an organization
  - Basically consider one Class B network to be a collection of many smaller networks
  - Size of smaller networks can be selected by the organization (don't have to be Class C sized networks)
- Internet routers don't need to know about subnetting within an organization
  - Just route their traffic to the organization

# Subnetting

#### Company's Class B Network:



#### **Building 1 Network:**



#### Department 4 network in Building 1:



#### Subnet ID (23)

#### Floor 13 network in Building 6:



# Subnetting

- Can recursively subnet addresses down to as fine a granularity as you want
  - Almost...
  - Minimum-sized subnet has 4 addresses
    - Address 00 names the subnet
    - Address 01 and 10 names hosts
    - Address 11 is the broadcast IP address
- Subnet sizes don't have to be the same
  - One building divided by department, one by floor
  - Department/floor subnets not the same size

### **Subnet Notation**

- A.B.C.D/X
  - IP address of the subnet (with o's in all host ID bits)
  - X = number of bits in the subnet network address
- Examples:
  - 17.0.0.0/8 Apple's entire class A address space
  - 17.2.3.0/24 A class C sized subnet in Apple's network
- Alternatively represented by subnet IP and a bit mask (netmask)
  - **1**7.0.0.0/255.0.0.0
  - **1**7.2.3.0/255.255.255.0

# **Subnet Meaning**

- Subnets don't have to have physical meaning
  - Although easier to keep track of if they do...
- Good subnet assignment simplifies routing for internal routers
  - All traffic for "building 1" goes through this port
  - All traffic for "department 3" goes through that port
  - ...

### **Problems**

- Address classes were too "rigid"
  - Class C is too small and Class B is too big in many situations
  - Inefficient use of address space
  - Leads to a shortage of addresses
- Small organizations wanted Class B networks
  - In case they grew to more than 255 hosts
  - But there are only about 16,000 Class B network IDs
- Larger organizations wanted many Class C networks
  - Separate network ID for each router link
- Every router in the Internet had to know about every network ID in every organization
  - Leads to large address tables in every router

# Classless InterDomain Routing

- CIDR introduced in 1993
  - Meant to provide more flexible routing
  - Eliminate dependences on "class" networks in routing
- "Supernetting"
  - Combine multiple contiguous networks into one larger network
  - Effectively reduces the number of entries needed in each routing table
  - Inverse of subnetting which takes one larger network and breaks it into multiple contiguous smaller networks

### CIDR Idea

- Break up IP address space into prefixes
  - Same idea as subnets (138.9/16)
- Each prefix has its own routing entry
  - All traffic to Pacific (138.9/16) within the Internet should be routed the same way, regardless of how Pacific subnets its address space

# Route Aggregation

- Example: One ISP handles traffic for two corporate networks (129.32/16 and 129.33/16)
- Aggregate route to 129.32/15 for both networks
  - External routers don't care how the ISP breaks up the network addresses internally!
- Only break them apart when necessary for the last (few) hop(s)

### What if there are holes?

- Pacific builds a 4<sup>th</sup> campus
  - 138.9/16 needs to be routed to Pacific
  - 138.9.8/24 needs to be routed to our satellite campus in Hawaii...
- Do we need to break routes up?
  - 138.9.0/20 (.0-.7)
  - **1**38.9.8/24 (.8)
  - 138.9.9/24 (.9), 138.9.10/24 (.10), 138.9.11/24 (.11)
  - **1**38.9.12/22 (.12-.15)
  - **1**38.9.16/20 (.16-.31)
  - **1**38.9.32/19 (.32-.63)
  - 138.9.64/18 (.64-.127)
  - **1**38.9.128/17 (.128-.255)

### **IP** Prefixes



- IP address space can be viewed as a number line
  - Each segment represents an aggregated route
  - Segments can overlap
- Look for smallest segment that matches the destination address: Longest Prefix Match

# Longest Prefix Match

- Allow more specific entries to supersede more general ones
  - **1**38.9.8/24
    - Route this traffic to Hawaii
  - **1**38.9/16
    - Route this traffic to Stockton
    - Except for addresses that match a route with a longer prefix (i.e., 138.9.8/24)
- Allows significantly more route aggregation
- Simplifies things if companies move (physically or to another ISP) their block of IP addresses

### **IP Address Classes**

- CIDR makes address classes less important
- With CIDR, routing is based on arbitrary subdivisions of the address space
  - Aggregate routes into largest possible group
  - Use longer prefixes to deal with exceptions
- Routing
  - Routers use longest prefix matching to determine routes
  - No longer deal with exact matches on class network IDs

#### **ARIN WHOIS Database Search**

Relevant Links: ARIN Home Page ARIN Site Map Training: Querying ARIN's WHOIS

#### Search ARIN WHOIS for: 138.9.1.21

Submit

OrgName: University of the Pacific

OrgID: UNIVER-95

Address: 3601 Pacific Ave.

City: Stockton

StateProv: CA PostalCode: 95211 Country: US

NetRange: 138.9.0.0 - 138.9.255.255

CIDR: 138.9.0.0/16

NetName: UOP

NetHandle: NET-138-9-0-0-1
Parent: NET-138-0-0-0-0
NetType: Direct Assignment
NameServer: NS1.PACIFIC.EDU
NameServer: NS2.PACIFIC.EDU

Comment:

RegDate: 1990-01-17 Updated: 2007-09-07

RAbuseHandle: DAVEA-ARIN
RAbuseName: Lundy, Dave A.
RAbusePhone: +1-209-946-3951
RAbuseEmail: dlundy@pacific.edu

RTechHandle: EES7-ARIN

RTechName: Escalante, Edgar RTechPhone: +1-209-946-3190

RTechEmail: eescalante@pacific.edu

OrgTechHandle: DAVEA-ARIN
OrgTechName: Lundy, Dave A.
OrgTechPhone: +1-209-946-3951
OrgTechEmail: dlundy@pacific.edu

# Router Operation

# What's inside a router?



## Simplified model of a router



## **Basic Router Components**

- Key Modules
  - Network Interface
  - Packet processing
  - Packet buffering
  - Packet switching
- Processing and buffering can be centralized or decentralized



## **Packet Processing**

- What does a router need to do?
- Driven by protocols
  - Ethernet
  - IP
  - ARP
  - ICMP
  - Transport: TCP, UDP, etc.

## On packet arrival...

- Processing
  - Buffer packet?
  - Determine protocol (e.g., IP vs. ARP)
  - Verify checksum, validate the packet, etc.
  - Collect statistics?
- What's next in the "common" (valid IP packet) case?
  - Select egress link

## Selecting an Egress Link

- Forwarding table lookup
  - Longest prefix match
  - Determine next hop IP address and egress link
- What if no match?
- Is this sufficient to route the packet to an output queue?

| Prefix        | Next Hop     | Port |
|---------------|--------------|------|
| 63/8          | 128.34.12.1  | 3    |
| 128.42/16     | 128.34.12.1  | 3    |
| 156.3/16      | 128.36.21.1  | 2    |
| 156.3.224/19  | 128.36.129.1 | 1    |
| 128.42.96/20  | 128.37.37.1  | 4    |
| 128.42.128/24 | 128.36.129.1 | 1    |
| 128.42.160/24 | 128.36.21.1  | 2    |

### **Updating the Destination Address**

- ARP table lookup
  - Exact match on next hop IP address
  - Determine next hop MAC address
- What if no match?

| IP           | MAC               |
|--------------|-------------------|
| 128.34.12.1  | 0C:FF:63:82:44:01 |
| 128.36.21.1  | 04:32:11:44:82:60 |
| 128.36.21.18 | 10:44:82:82:44:07 |
| 128.37.37.37 | 08:82:82:44:16:32 |
| 128.34.12.14 | 20:33:71:28:15:70 |
| 128.36.21.42 | 14:93:29:22:15:28 |

## Generating ARP Requests

- Broadcast on output port
  - Ask for MAC address of next hop IP address
- Wait for reply
  - What do you do with the packet?
  - How long should you wait? (tradeoffs?)
- Receive reply
  - Update ARP table
  - Packet continues along forwarding path

## Receiving ARP Requests

- Does the IP address match the IP address of the interface that received the ARP request?
  - Another system is trying to determine your MAC address
  - Respond with the appropriate ARP reply on the same interface
- Should ARP requests be forwarded if they aren't for the router?

## **Updating Packets**

- Select egress link
- Update MAC address
- Is it now OK to forward packet to output queue?
- IP packet header must be modified
  - What needs to be modified?
  - When should it be modified?

## **Buffering**

- Why do packets need to be buffered?
  - Waiting for access to a resource (lookup table, switch, etc.)
  - Waiting for an ARP reply
  - **-** ...
- What happens when buffers get full?
  - Packets have to be dropped
- How large do buffers need to be?
  - Statistical multiplexing

## **Error Handling**

- ICMP Messages
  - Notify sender of errors
- Common error types
  - Host/network unreachable
    - No ARP response
  - Time exceeded
    - TTL decremented to zero
  - No route to host
    - No entry in routing table

# Routing Algorithms

### Two Key Network-Layer Functions

#### Forwarding

- Move packets from router's input to appropriate router output
- Forwarding table

#### Routing

- Determine path (route) taken by packets from source to destination
- Routing algorithms

- Road trip analogy:
  - Forwarding: process of getting through single interchange
  - Routing: process of planning trip from source to destination

## Routing versus Forwarding



Routing algorithm *creates* the forwarding table, which is used on a per-packet basis



# Forwarding Table Entries



## Generating/Updating Routes

- So far, we have assumed forwarding tables are populated statically by an administrator
- In reality, they are dynamically updated
  - Faster reaction to changing network conditions
- What makes a good route?
  - Low delay
  - High bandwidth
  - Low link utilization
  - High link stability
  - Low cost
    - (cheaper to use ISP A than ISP B)

## Example Network



## "Best" Path



## Real Networks Are Complicated

The Internet in 2003

http://www.opte.org/maps/

