ELEC / COMP 177 – Fall 2013

Computer Networking

→ Dynamic Host Configuration (DHCP)

Upcoming Schedule

- Project 2 Python HTTP Server++
 - Work day: Next Tuesday (Oct 8th)
 - Due Thursday, October 10th by 11:55pm
 - Questions?

Upcoming Schedule

Midterm Exam

- Tuesday, October 15th
- Bring laptop / USB key
- Open notes, open computer, open internet
- 1 programming problem using Python
 - Something to do with HTTP...
 - If you have your web server from projects 1/2 handy, you can repurpose it quickly...

Dynamic Host Configuration Protocol (DHCP)

DHCP Overview

- How does a host obtain its IP address?
 - DHCP Dynamic Host Configuration Protocol
- DHCP is an application
 - But it is interested in IP address information
 - That is part of the network layer! (two layers down!)

Assignment of IP Addresses

- How does a host computer gets its IP address?
- Static assignment
 - Requires user involvement to set in OS
 - We configure hosts in the lab statically
 - It's "educational!" (plus, to make each lab work, you have to be very careful about what IP addresses you use)
 - Datacenters might configure servers statically since they rarely change addresses
- Dynamic assignment
 - Requires no user involvement
 - Represents the bulk of hosts on the Internet

Dynamic Host Configuration Protocol (DHCP)

- Goals of DHCP
 - Plug and play!
 (Can't trust grandma to set her IP address, netmask, and default gateway correctly...)
 - Allow host to dynamically obtain its IP address from network server when it joins network
 - Allow host to renew its lease on in-use address.
 - Allow reuse of addresses (if you disconnect your host, someone else can use that address)

DHCP

- DHCP packet nested inside UDP, IP, and Ethernet frame
- Four stages to DHCP
 - Discover (new host only)
 - 2. Offer (new host only)
 - 3. Request
 - 4. Acknowledge

Step 1 – DHCP Discover

- "Discover DHCP servers on the network"
- (New host only) Host broadcasts "DHCP discover" message to entire subnet
 - What is broadcast?
 - Subnet = Anywhere on Ethernet you can reach without going through a router
 - DHCP server either located on same subnet, or router has been configured to intercept and forward DHCP messages
 - Router might be the DHCP server!

Step 2 – DHCP Offer

- "DHCP servers offer client an IP assignment"
- (New host only) DHCP server responds directly to client with "DHCP offer" message
- Message contains
 - IP address of DHCP server
 - A lease offer to the client
 - IP address
 - Subnet mask
 - Lease duration
- Might get several offers from different DHCP servers

Step 3 – DHCP Request

- "Host requests the best offer"
- Host picks the DHCP offer it likes best
- Host requests IP address with a "DHCP request" message
 - Message is broadcast across subnet. Why?
 - May have received multiple offers from multiple servers
 - Servers are reserving an IP address for you
 - Need to let all servers know, even the ones you didn't accept (so they can return the address to the pool)

Step 4 – DHCP Ack

- "DHCP server confirms accepted offer, and sends other information."
- Only the server whose lease the client requested sends back a "DHCP Ack" message
- Re-confirms the lease information

DHCP Client-Server Scenario

DHCP client-server scenario

DHCP - More Than Just IP Address

- DHCP can return more than just allocated IP address on subnet
 - Address of gateway router for client
 - Name and IP address of DNS sever(s)
 - Network mask (indicating network versus host portion of address)
 - NTP server (network time)
 - LDAP server (address book)
 - SIP server (Voice-over-IP server)
 - ... and many many more possibilities!

DHCP: example

- Connecting laptop needs its IP address, addr of first-hop router, addr of DNS server
 - Use DHCP!
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in Ethernet
- Ethernet unpacked (to IP, then UDP, then DHCP)

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- Encapsulation of DHCP ACK at server, frame forwarded to client, demux'ing up to DHCP at client
- Client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

DHCP Wireshark Output @ Pacific

(Shortened, and I already had an old IP)

DHCP REQUEST

Ethernet II, Src: 7c:6d:62:8c:c2:df, Dst: Broadcast (ff:ff:ff:ff:ff)

IP, Src: o.o.o.o, Dst: 255.255.255

UDP, Src Port: bootpc (68), Dst Port: bootps (67)

Bootstrap Protocol

Message type: Boot Request (1)

Hardware type: Ethernet Transaction ID: **ox73487c67** Bootp flags: oxoooo (Unicast) Client IP address: o.o.o.o (o.o.o.o)

Your (client) IP address: 0.0.0.0 (0.0.0.0)

Next server IP address: 0.0.0.0 (0.0.0.0) Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Apple_8c:c2:df (7c:6d:62:8c:c2:df)

Magic cookie: DHCP

Option: (t=53,l=1) DHCP Message Type = **DHCP Request**

Option: (t=55, l=10) Parameter Request List

Option: (t=57, l=2) Maximum DHCP Message Size = 1500

Option: (t=61,l=7) Client identifier

Option: (t=50, l=4) Requested IP Address = 10.10.207.20 Option: (t=51, l=4) IP Address Lease Time = 90 days

Option: (t=12,l=18) Host Name = "MacBookPro-Pacific"

DHCP ACK

Ethernet II, Src: Cisco_53:3f:fc (00:05:dc:53:3f:fc), Dst: 7c:6d: 62:8c:c2:df

IP, Src: 10.10.207.254, Dst: 10.10.207.20

UDP, Src Port: bootps (67), Dst Port: bootpc (68)

Bootstrap Protocol

Message type: Boot Reply (2)

Hardware type: Ethernet Transaction ID: **ox73487c67** Bootp flags: oxoooo (Unicast)

Client IP address: o.o.o.o (o.o.o.o)

Your (client) IP address: 10.10.207.20 (10.10.207.20)

Next server IP address: o.o.o.o (o.o.o.o)

Relay agent IP address: 10.10.207.254 (10.10.207.254) Client MAC address: Apple_8c:c2:df (7c:6d:62:8c:c2:df)

Magic cookie: DHCP

Option: (t=53,l=1) DHCP Message Type = **DHCP ACK**

Option: (t=54,l=4) DHCP Server Identifier = 10.10.4.226

Option: (t=51,l=4) **IP Address Lease Time = 1 day**

Option: (t=1,l=4) Subnet Mask = 255.255.254.0

Option: (t=3,l=4) **Router = 10.10.207.254**

Option: (t=6,l=8) **DNS= 10.10.4.2.226, 10.10.4.227**

Option: (t=15, l=15) Domain Name = "eng.pacific.edu"

Option: (t=44, l=8) NetBIOS over TCP/IP Name Server

Option: (t=46,l=1) NetBIOS over TCP/IP Node Type = H-node

How to Allocate Addresses?

- DHCP server has a pool of addresses
 - How to we give them out to clients?
- Randomly?
 - First-come, first-serve
 - Host might get a different address each time
- Persistently?
 - Look at host MAC address, and try to give it the same address it had last time
- Statically?
 - Reserve an IP address only for a specific client with a specific MAC address

Source of IP Addresses

- How do the network DHCP servers know what pool of IP addresses to use?
 - One way: Your network is allocated portion of its provider ISP's address space

ISP's block	<u>11001000 00010111 0001</u> 0000 00000000	(200.23.16.0/20)
Organization 0	<u>11001000 00010111 0001000</u> 0 00000000	(200.23.16.0/23)
Organization 1	<u>11001000 00010111 0001001</u> 0 00000000	(200.23.18.0/23)
Organization 2	<u>11001000 00010111 0001010</u> 0 00000000	(200.23.20.0/23)
•••	••••	••••
Organization 7	<u>11001000 00010111 0001111</u> 0 00000000	(200.23.30.0/23)

Hierarchical Addressing: Route Aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical Addressing: More Specific Routes

Let's say Organization 1 switches ISPs. What happens? ISPs-R-Us announces a more specific route to Organization 1

How Does an ISP Get IP Addresses?

- ICANN: Internet Corporation for Assigned
 Names and Numbers
 - Used to be the US Government!
 - Now a non-profit corporation
- Role of ICANN
 - Allocates addresses (actually gives large blocks of IPs to regional registries)
 - Manages DNS (actually delegates this job too)
 - Assigns domain names, resolves disputes