7
Computer Systems and Networks

ECPE 170 — University of the Pacific

Crash Dive into
Python

Lab Schedule

Activities Assignments Due
Today Sun Dec 15t
? Python crash course ?” Lab 11 due by 11:59pm

72 lLab1l1&12
Tues Dec 10t

Last 2 days of class ? Lab 12 due by 11:59pm

72 Lab 12 — Network
Programming

Person of the Day: Guido van Rossum

Author of the Python

programming language

72 Self-appointed “Benevolent
Dictator For Life”

Chose the name because he
was “in a slightly irreverent
mood (and a big fan of Monty
Python's Flying Circus)”

Has worked in numerous
organizations, including NIST,
Google and Dropbox

What is Python

It is an interpreted language for scripting and many
other uses

Its features include:

7
7
7
7

Objects

Dynamic types

A rich set of libraries

Extensibility through C (for speed critical code)

It is most notorious for its indentation rules, using
whitespace or tabs (and it is very picky)

Python datatypes

Python supports many of the datatypes from C or
C++:

7 Integers, floats, strings, booleans

In addition, later versions support other useful
types:

2 Complex numbers
Sequences (tuples, lists)
Dictionaries

Sets

Bytes and bytearrays

N N N N

Python Tuples

A tuple is an immutable collection of objects

Tuples are denoted by parenthesis
>>> t = (1,2,3)

(1,2,3)

>>> type(t)

<type “tuple’>

The objects in a tuple do not need to be of the
same type

Python Lists

A list is an mutable collection of objects

Lists are denoted by square brackets
>>> | = [1.5,7a”,(3,True)]
[1.5, “a’, (3, True)]

>>> type(l)

<type “list’>

Lists can be edited, sorted, chopped up...

Python Sequences

Tuples and lists are both types of sequences:
individual items can be accessed in various ways

To access a particular item in a sequence:
>>> print (t[O0],1[1])
1 a

Sequences can also be access from the end using
negative indices

>>> print (t[-2],1[-1])
2 (3, True)

Python Sequences

Slices (subsets of sequences) are accessed by using
3 “w,n

>>> t[0:2]

(1,2)

>>> 1[1:]

["a®", (3, True)]

Note that the second index (if supplied) is one
greater than actual last object in the slice

Python Dictionaries

A dictionary is an associative array of keys and value pairs:

>>> d={"a":1, "b":2, 3:"c"}

>>> d

{"b": 2, 3: "c", "a": 1}

>>> d.keys()

dict keys(["b", 3, "a'])

>>> d.values()

dict_values([2, "c", 1]

>>> d["a"]

1

>>> d["c"]

Traceback (most recent call last):
File "<stdin>", line 1, 1In <module>

KeyError: "c°©

Python Error Handling

Python handles errors using the try and except
statements:

>>> try:
di"c"]
. except:\
print ("bad key value®)

bad key value

Python Blocks

Python uses whitespace and “:” to denote blocks
7 WARNING: tabs and spaces are not interchangeable!

Within a block, all lines are indented exactly the
same amount
2 >>> print (1)

[1.5, "a", (3, True)]

>>> print (I)
File “'<stdin>", line 1
print (1)
N\

IndentationError: unexpected i1ndent

Python Statements

and Flow Control

Python supports these statements: 1, elif,
else, for, while
>>> 1 fF 1 > 2:
print (a)
. elif 3 > 2:
) print (t)
. else:
print ("neither”)

1, 2, 3)

Python Statements

and Flow Control

The For statement takes a sequence as its input:

2 >>> for x In (1,3,5,%a"):
print (x)

Q O1WHE o

This will also work for any sequence type (tuples,
lists, strings, etc)

Python Statements

and Flow Control

For the equivalent of a C for loop, use the range
class

>>> for 1 1In range(0,9,3):
print (1)

o)
3
6

This is equivalent to
for (int 1=0; 1 < 9; 1 += 3)

Using Python Libraries

Libraries (modules) are accessed using the import statement

import math

>>> dir(math)

[T doc *, " loader_ ", " name_ ", " package ", "acos”,
"acosh®, "asin®", "asinh®", "atan®, "atan2®, "atanh-,
*ceil®, "copysign®, "cos®", "cosh®, “degrees®, "“e",
"erf®, “erfc", “exp", "expml®, "fabs®, "factorial-,
*floor®, "fmod", "frexp®, “fsum®, "gamma®, “hypot-,
"isfinite”, "i1sinf", “isnan®, "ldexp®, "lgamma®, “log-,
"logl10®, “loglp®, "“log2®, “"modf*", "pi~", “pow",
"radians®, "sin®, °"sinh®, “sgrt®, "tan®, "tanh-",
"trunc”]

>>> math.sin(2)

0.9092974268256817

>>> from math import sin

>>> sin(2)

0.9092974268256817

The dir Function

Within the interpreter, dir is handy for exploring variables and libraries
2 >>> t=[1.5,"a",(3,True)]

>>> type(t)

<class "list">

>>> dir(t)

[F add ", " class ", " contains_ ",

" delattr__ ", " delitem_*, * dir__", " doc_ ",
" eq ", " format_ ", " ge *°,

" getattribute ", " getitem ", " gt *,

" hash__ ", " w1add__ ", " imul__ ", " init_ ",

" ater__ ", " _le_ ", " len__ ", " It ",

" mul_ ", " ne_ ", " new_ ", " reduce_ ",

" reduce ex ", " repr__ ", " reversed ",

_rmul__ ", " setattr__ ", " setitem ",

" sizeof ", " str__ ", " subclasshook ",
"append”, "clear”, "copy®, "count®, "extend-”,
"index", "insert", "pop", °“remove®, "reverse-,
"sort"]

Anything with “__ xxx__ " is a built-in operation

Runtime evaluation

Since Python is interpreted, and has dynamic
typing, syntax is checked when code is first
encountered, but variable types (or even their
existence) aren’t checked until the code is executed

As a result, sometimes code will execute correctly
for a while until either an undefined variable is
encountered, or it is used incorrectly (i.e., trying to
access an integer as a sequence)

20

7
The struct Module

The struct Module

Since the details of variables are hidden in Python
(for example, how many bytes is an integer?), there
are no built-in ways to store values into files along
with their encoding

7 A typical Python file would contain just ASCIl or
Unicode values

The struct module deals with binary data

In reality, it performs conversions between basic
Python datatypes and binary strings

The struct Module

There are two main functions in the struct
module

A pack: convert a group of variables into a string

2 unpack: convert a string into a group of variables

These are similar to C’s printf and scanf

Each function requires a format string to describe
how to pack or unpack the arguments

The struct Module

Since we may need to convert data which is larger
than one byte, endianness is an issue

The first character of the format string determines
the endianness

Native Native Native
= Native Standard None
< Little Standard None
> Big Standard None

! Network (Big) standard None

	Computer Systems and Networks
	Lab Schedule
	Person of the Day: Guido van Rossum
	Python
	What is Python
	Python datatypes
	Python Tuples
	Python Lists
	Python Sequences
	Python Sequences
	Python Dictionaries
	Python Error Handling
	Python Blocks
	Python Statements �and Flow Control
	Python Statements �and Flow Control
	Python Statements �and Flow Control
	Using Python Libraries
	The dir Function
	Runtime evaluation
	The struct Module
	The struct Module
	The struct Module
	The struct Module

