

Computer Systems and Networks
ECPE 170 – University of the Pacific

Crash Dive into
Python

Lab Schedule

Activities
 Today

 Python crash course
 Lab 11 & 12

 Last 2 days of class
 Lab 12 – Network

Programming

Assignments Due

Fall 2013 Computer Systems and Networks

2

 Sun Dec 1st
 Lab 11 due by 11:59pm

 Tues Dec 10th
 Lab 12 due by 11:59pm

Person of the Day: Guido van Rossum

 Author of the Python
programming language
 Self-appointed “Benevolent

Dictator For Life”

 Chose the name because he
was “in a slightly irreverent
mood (and a big fan of Monty
Python's Flying Circus)”

 Has worked in numerous
organizations , including NIST,
Google and Dropbox

Fall 2013 Computer Systems and Networks

3


Python

Fall 2013 Computer Systems and Networks

4

What is Python

 It is an interpreted language for scripting and many
other uses

 Its features include:
 Objects
 Dynamic types
 A rich set of libraries
 Extensibility through C (for speed critical code)

 It is most notorious for its indentation rules, using
whitespace or tabs (and it is very picky)

Fall 2013 Computer Systems and Networks

5

Python datatypes

 Python supports many of the datatypes from C or
C++:
 Integers, floats, strings, booleans

 In addition, later versions support other useful
types:
 Complex numbers
 Sequences (tuples, lists)
 Dictionaries
 Sets
 Bytes and bytearrays

Fall 2013 Computer Systems and Networks

6

Python Tuples

 A tuple is an immutable collection of objects

 Tuples are denoted by parenthesis
>>> t = (1,2,3)

(1,2,3)

>>> type(t)

<type ‘tuple’>

 The objects in a tuple do not need to be of the
same type

Fall 2013 Computer Systems and Networks

7

Python Lists

 A list is an mutable collection of objects

 Lists are denoted by square brackets
>>> l = [1.5,’a’,(3,True)]

[1.5, ‘a’, (3, True)]

>>> type(l)

<type ‘list’>

 Lists can be edited, sorted, chopped up…

Fall 2013 Computer Systems and Networks

8

Python Sequences

 Tuples and lists are both types of sequences:
individual items can be accessed in various ways

 To access a particular item in a sequence:
>>> print (t[0],l[1])
1 a

 Sequences can also be access from the end using
negative indices
>>> print (t[-2],l[-1])
2 (3, True)

Fall 2013 Computer Systems and Networks

9

Python Sequences

 Slices (subsets of sequences) are accessed by using
a “:”
>>> t[0:2]

(1,2)

>>> l[1:]

['a', (3, True)]

 Note that the second index (if supplied) is one
greater than actual last object in the slice

Fall 2013 Computer Systems and Networks

10

Python Dictionaries

 A dictionary is an associative array of keys and value pairs:
>>> d={'a':1, 'b':2, 3:'c'}
>>> d
{'b': 2, 3: 'c', 'a': 1}
>>> d.keys()
dict_keys(['b', 3, 'a'])
>>> d.values()
dict_values([2, 'c', 1])
>>> d['a']
1
>>> d['c']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'c‘

Fall 2013 Computer Systems and Networks

11

Python Error Handling

 Python handles errors using the try and except
statements:
>>> try:

... d['c']

... except:\

.. print ('bad key value')

...

bad key value

Fall 2013 Computer Systems and Networks

12

Python Blocks

 Python uses whitespace and “:” to denote blocks
 WARNING: tabs and spaces are not interchangeable!

 Within a block, all lines are indented exactly the
same amount
 >>> print (l)

[1.5, 'a', (3, True)]
>>> print (l)
 File "<stdin>", line 1
 print (l)
 ^
IndentationError: unexpected indent

Fall 2013 Computer Systems and Networks

13

Python Statements
and Flow Control

 Python supports these statements: if, elif,
else, for, while
>>> if 1 > 2:
... print (a)
... elif 3 > 2:
... print (t)
... else:
... print ('neither')
...
(1, 2, 3)

Fall 2013 Computer Systems and Networks

14

Python Statements
and Flow Control

 The for statement takes a sequence as its input:
 >>> for x in (1,3,5,'a'):

... print (x)

...
1
3
5
a

 This will also work for any sequence type (tuples,
lists, strings, etc)

Fall 2013 Computer Systems and Networks

15

Python Statements
and Flow Control

 For the equivalent of a C for loop, use the range
class
>>> for i in range(0,9,3):
... print (i)
...
0
3
6

 This is equivalent to
 for (int i=0; i < 9; i += 3)

Fall 2013 Computer Systems and Networks

16

Using Python Libraries

 Libraries (modules) are accessed using the import statement
import math
>>> dir(math)
['__doc__', '__loader__', '__name__', '__package__', 'acos',

'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh',
'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e',
'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial',
'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',
'log10', 'log1p', 'log2', 'modf', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh',
'trunc']

>>> math.sin(2)
0.9092974268256817
>>> from math import sin
>>> sin(2)
0.9092974268256817

Fall 2013 Computer Systems and Networks

17

The dir Function

 Within the interpreter, dir is handy for exploring variables and libraries
 >>> t=[1.5,'a',(3,True)]

>>> type(t)
<class 'list'>
>>> dir(t)
['__add__', '__class__', '__contains__',
'__delattr__', '__delitem__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__gt__',
'__hash__', '__iadd__', '__imul__', '__init__',
'__iter__', '__le__', '__len__', '__lt__',
'__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__reversed__',
'__rmul__', '__setattr__', '__setitem__',
'__sizeof__', '__str__', '__subclasshook__',
'append', 'clear', 'copy', 'count', 'extend',
'index', 'insert', 'pop', 'remove', 'reverse',
'sort']

 Anything with “__xxx__” is a built-in operation

Fall 2013 Computer Systems and Networks

18

Runtime evaluation

 Since Python is interpreted, and has dynamic
typing, syntax is checked when code is first
encountered, but variable types (or even their
existence) aren’t checked until the code is executed

 As a result, sometimes code will execute correctly
for a while until either an undefined variable is
encountered, or it is used incorrectly (i.e., trying to
access an integer as a sequence)

Fall 2013 Computer Systems and Networks

19


The struct Module

Fall 2013 Computer Systems and Networks

20

The struct Module

 Since the details of variables are hidden in Python
(for example, how many bytes is an integer?), there
are no built-in ways to store values into files along
with their encoding
 A typical Python file would contain just ASCII or

Unicode values

 The struct module deals with binary data

 In reality, it performs conversions between basic
Python datatypes and binary strings

Fall 2013 Computer Systems and Networks

21

The struct Module

 There are two main functions in the struct
module
 pack: convert a group of variables into a string
 unpack: convert a string into a group of variables

 These are similar to C’s printf and scanf

 Each function requires a format string to describe
how to pack or unpack the arguments

Fall 2013 Computer Systems and Networks

22

The struct Module

 Since we may need to convert data which is larger
than one byte, endianness is an issue

 The first character of the format string determines
the endianness

Fall 2013 Computer Systems and Networks

23

Character Byte order Size Alignment

@ Native Native Native

= Native Standard None

< Little Standard None

> Big Standard None

! Network (Big) standard None

	Computer Systems and Networks
	Lab Schedule
	Person of the Day: Guido van Rossum
	Python
	What is Python
	Python datatypes
	Python Tuples
	Python Lists
	Python Sequences
	Python Sequences
	Python Dictionaries
	Python Error Handling
	Python Blocks
	Python Statements �and Flow Control
	Python Statements �and Flow Control
	Python Statements �and Flow Control
	Using Python Libraries
	The dir Function
	Runtime evaluation
	The struct Module
	The struct Module
	The struct Module
	The struct Module

