
 
Computer Systems and Networks 
ECPE 170 – University of the Pacific 

Processor 
Architecture 



Lab Schedule 

Activities 
 Today 

 Processor Architecture 
 Lab 10 & 11 

 Thursday 
 Network Programming 
 Lab 11 & Lab 12 

 Next Tuesday 
 ???? 

Assignments Due 
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 Tonight  
 Lab 10 due by 11:59pm 

 Sun Dec 1st 
 Lab 11 due by 11:59pm 

 

 

 



 
MIPS Instruction Cycle 
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MIPS Instruction Cycle 

 How does the hardware MIPS processor execute a 
single instruction? 

 With a 5-step instruction cycle 
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Instruction 
Fetch 

Instruction 
Decode Execute Memory 

Access Write Back 



MIPS Instruction Cycle 

 Step 1 – Instruction Fetch (IF) 
 Retrieve next instruction from memory 

(check the instruction cache first!) 
 Program Counter (PC) register stores address of 

next instruction to be retrieved/executed 
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MIPS Instruction Cycle 

 Step 2 – Instruction Decode (ID) 
 Decode instruction – what should we do? 
 Retrieve input values from registers 
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MIPS Instruction Cycle 

 Step 3 – Execute (EX) 
 ALU performs arithmetic or logical operation 
 Operation might be calculating a memory address 
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MIPS Instruction Cycle 

 Step 4 – Memory Access (MEM) 
 Read/write memory if necessary 

(Check the data cache first!) 
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MIPS Instruction Cycle 

 Step 5 – Write Back (WB) 
 Write final result of instruction to register  

if necessary 
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Example 1 – add $s0,$s1,$s2 

1. IF: Load instruction from memory; increment PC 

2. ID: Determine operation is “add”;  
Load $s1 and $s2 from registers 

3. EX: ALU performs addition operation 

4. MEM: No operation (no-op) 

5. WB: Output of ALU written to $s0 
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Example 2 – lw $s0,10($t1) 

1. IF: Load instruction from memory, increment PC 

2. ID: Determine operation is “load word”;  
retrieve value of $t1 from register 

3. EX: ALU calculates memory address of desired data 
($t1 plus 10 sign-extended to full 32 bits) 

4. MEM: Retrieve data from memory at address 
calculated by ALU (check the data cache first!) 

5. WB: Output of memory written to $s0 
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Example 3 – sw $s0,20($t1) 

1. IF: Load instruction from memory, increment PC 

2. ID: Determine operation is “store word”;  
retrieve values of $s0 and $t1 from registers 

3. EX: ALU calculates memory address of storage 
location ($t1 plus 20 sign-extended to full 32 bits) 

4. MEM: Store value from $s0 to memory at address 
calculated by ALU (write goes to the data cache!) 

5. WB: No operation (no-op) 
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Example 4 – beq $t1,$t2,label 

1. IF: Load instruction from memory, increment PC 

2. ID: Determine operation is “branch on equal”;  
retrieve values of $t1 and $t2 from registers 

3. EX: ALU calculates memory address of location to jump 
to if the comparison is true (PC + label sign-extended to 
full 32 bits); ALU also compares $t1 and $t2 for equality 

4. MEM: If comparison is equal, PC = address calculated by 
ALU. Otherwise, PC is unchanged 

5. WB: No operation (no-op) 
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 
Pipelining 
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Instruction Cycle 
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New Goal:  Run the instruction 
cycle quickly and efficiently 

The performance of our 5-step 
instruction cycle is slow if we 

only do one instruction at a time 



Instruction Cycle 

 A laundry analogy… 
 Laundry cycle instead of instruction cycle 

 Doing laundry in your residence hall 
 Washing machine – 35 minutes 
 Dryer – 60 minutes 
 Folding / Hanging – 8 minutes 

 How do you do one load of laundry the fastest? 
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Washer Dryer Fold 

35 60 8 

= 103 
minutes 
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Instruction Cycle for Laundry 

 How do you do two loads of laundry the fastest? 
 Back to back? 

 206 minutes total 
 Leaves machines idle at different times 

 Concurrently? 

17 

Washer Dryer Fold 

35 60 

Washer Dryer Fold 

60 8 

Total: 163 minutes  

Load 1: 

Load 2: 

Time  
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Pipelining 

 This is pipelining 
 Performing work in parallel instead of sequentially 

 Goal: Keep all hardware busy 
 Provides for instruction level parallelism (ILP) 

 Executing more than one instruction at a time 
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Instr. 
# 

Pipeline Stage 

1 IF ID EX MEM WB 

2 IF ID EX MEM WB 

3 IF ID EX MEM 

Cycle 1 2 3 4 5 6 

Instr. 
# 

Stage 

1 IF ID EX MEM WB 

2 IF ID EX 

3 

Cycle 1 2 3 4 5 6 7 8 

Without Pipelining: With Pipelining: 

Finish first 
instruction… 

… before 
starting second 
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Deeper Pipelining 

 We can do better than this 

 (Original) Laundry Room Specifications: 
 Washing machine – 35 minutes 
 Dryer – 60 minutes 
 Folding / Hanging – 8 minutes 

 What is the bottleneck in our simple pipeline? 
 Drying takes much longer than the other stages 
 This slows down the entire laundry process 
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Pipelining / Laundry Revisited 

 How can we fix it?  Get two dryers 
 Operate them in parallel, or … 
 Operate them in series for half the time 

 Each has a specialized task 
 First dryer set to hot (initial drying) 
 Second dryer set to cool (final drying / prevent shrinking) 
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Washer Dryer Fold 

35 60 

Washer Dryer Fold 

60 8 

Total: 163 minutes  

Load 1: 

Load 2: 

Time  
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Pipelining / Laundry Revisited 

 How can we fix it?  Get two dryers 
 Operate them in parallel, or … 
 Operate them in series for half the time 

 Each has a specialized task 
 First dryer set to hot (initial drying) 
 Second dryer set to cool (final drying / prevent shrinking) 
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Washer Fold 

35 

Washer Fold 

8 

Total: 138 minutes 

Load 1: 

Load 2: 

Hot Dry Cool Dry 

Hot Dry Cool Dry 

35 30 30 
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Pipelining / Laundry Revisited 

 Better performance 
 206 minutes  163 minutes  138 minutes 
 But now we’re limited by the washer speed 

 How do we fix this? 
 Buy more machines, each doing smaller parts of the task 

 Could I benefit from 10 machines? 100? 1000? 
 Not shown in timeline: Time required to advance laundry 

from one stage to the next 
 The time spent moving laundry between machines could 

exceed the time spent in the machines  
 System becomes increasingly complex to design  
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Pipeline Challenge 1 

 Ideal pipeline speedup is equal to pipeline depth 
 5 stages? Program could run at best 5 times faster 

 Pipeline challenge – only achieve ideal speedup if the 
pipeline is perfectly balanced  
 The hardware in every stage takes the exact same amount of 

time to operate 

 Most pipelines are not balanced 
 Example: loading data from memory is slower than decoding 

instruction 

 Do we set processor frequency to fastest or slowest stage? 
 Slowest stage – otherwise it won’t have time to finish 

Fall 2013 Computer Systems and Networks 

23 



Pipeline Challenge 2 

 Problem: We might not always be able to keep the 
pipeline full of instructions 

 Hazards cause pipeline conflicts and stalls 
 Data hazards (dependencies) 
 Structural hazards (resource conflicts) 
 Control hazards (conditional branching) 
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Data Hazard 
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Program correctness depends on executing instructions 
in original order 

Read After Write 
 

add $s1,$t1,$t2 
add $s2,$t3,$t4 
add $t4,$s1,$s2 
 
Third add cannot 
proceed until first two 
are complete! 

Write After Read 
 

add $t1,$s1,$t2 
add $s1,$t3,$t4 
 
 
Second add cannot write 
result until after first add 
has read its inputs! 

Write After Write 
 

add $s1,$t1,$t2 
add $s1,$t3,$t4 
 
 
Second add cannot write 
result until after first add 
has written its result! 



Structural Hazard, Control Hazard 

 Structural hazard 
 Part of the processor hardware is required by 

two different instructions at the same time 
 Example: A shared memory, shared ALU, shared 

data bus, etc… 

 Control hazard 
 The processor needs to know which instruction 

will be executed next, and it can’t until the 
branch is determined 
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Instruction-Level Pipelining 

 Hazards can cause pipeline to stall or flush 
 Stall – pipeline is delayed for a cycle 
 Flush – all instructions in pipeline are deleted 

 Clever hardware or clever assembly programmers 
(or optimizing compilers) can reduce the effects of 
these hazards 
 But not fully eliminate them… 
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Intel Pipelining 

 Almost all Intel chips (286, 386, 486, etc…) have 
some degree of pipelining 

 Pipelining was first seriously applied to the Intel 
486 chip in 1989 
 Could complete an ALU instruction (coming from a 

register, going to a register) every clock cycle 

 Pipelining got better with the Pentium chip in 1993 
 Double-wide: Two instructions are sent down the 

pipeline every cycle!  (Requires two ALUs, etc…) 
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Intel Pipelining 

 Pipeline depth changed over time: 
 Original Pentium: 5 stages 
 Pentium 2: 12 stages 
 Pentium 3: 14 stages 
 Pentium 4: 20-24 stages 
 Pentium 4 extreme edition: 31 stages  
 Why were the pipelines getting longer? 

 Today 
 Core i7 has a 17-stage pipeline 
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MIPS Pipelining 

 Like Intel, the pipeline size of the MIPS processors 
has grown 
 R2000 and R3000 have 5-stage pipelines 
 R4000 and R4400 have 8-stage pipelines 
 R10000 has three pipelines:  

 5-stage pipeline for integer instructions 
 7-stage pipeline for floating-point instructions 
 6-state pipeline for LOAD/STORE instructions 
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 
Parallelism 
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Instruction-Level Parallelism 

 Example program: (imagine it was in assembly) 

 

 

 

 Assume we have a processor with “lots” of ALUs 
 What instructions can be executed in parallel? 
 What instructions cannot be executed in parallel? 
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①  e = a + b; 
②  f = c + d; 
③  g = e * h; 



Instruction-Level Parallelism 

 Example program 2: (imagine it was in assembly) 

 

 

 

 

 Assume we have a processor with “lots” of ALUs 
 What instructions can be executed in parallel? 
 What instructions cannot be executed in parallel? 

 If we tried really hard, could we run them in parallel? 
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①  e = a + b; 
②  f = c + d; 
③  if(e > f) 
④    a = 15; 
⑤  else 
⑥    a = 18; 
⑦  g = h + 30; 



Instruction-Level Parallelism 

 This is instruction-level parallelism  
 Finding instructions in the same program that can be 

executed in parallel 
 Different from multi-core parallelism, which 

executes instructions from different programs in 
parallel 

 You can do this in a single “core” of a CPU 
 Adding more ALUs to the chip is easy 
 Finding the parallelism to exploit is harder… 
 Getting the data to the ALUs is harder… 
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Instruction-Level Parallelism 

 Instruction-level parallelism is good  
 Let’s find as much of it as possible and use it to 

decrease execution time! 

 Two competing methods: 
 Superscalar: the hardware finds the parallelism 
 VLIW: the compiler finds the parallelism 

 Both designs have multiple execution units  
(e.g. ALUs) in a single processor core 

Fall 2013 Computer Systems and Networks 

35 



MIMD – Superscalar 

 Superscalar designs – the hardware finds the 
instruction-level parallelism while the program is 
running 

 Challenges 
 CPU instruction fetch unit must simultaneously 

retrieve several instructions from memory 
 CPU instruction decoding unit determines which of 

these instructions can be executed in parallel and 
combines them accordingly 
 Complicated! 
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MIMD – VLIW 

 Very long instruction word (VLIW) designs – the compiler 
finds the instruction-level parallelism before the program 
executes 
 The compiler packs multiple instructions into one long 

instructions that the hardware executes in parallel 

 Arguments: 
 For: Simplifies hardware, plus the compiler can better 

identify instruction dependencies (it has more time to work) 
 Against: Compilers cannot have a view of the run time code, 

and must plan for all possible branches and code paths 

 Examples: Intel Itanium, ATI R600-R900 GPUs 
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Instruction-Level Parallelism 

 Back to the example 
program: 

 

 

 

 

 More techniques for ILP 

 Speculative execution  
(or branch prediction) 
 Guess that e>f, and 

execute line 4 
immediately… 

 Out-of-order execution 
 Execute line 7 before 4-6, 

since it doesn’t depend on 
them 
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①  e = a + b; 
②  f = c + d; 
③  if(e > f) 
④    a = 15; 
⑤  else 
⑥    a = 18; 
⑦  g = h + 30; 
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