

Computer Systems and Networks
ECPE 170 – University of the Pacific

Processor
Architecture

Lab Schedule

Activities
 Today

 Processor Architecture
 Lab 10 & 11

 Thursday
 Network Programming
 Lab 11 & Lab 12

 Next Tuesday
 ????

Assignments Due

Fall 2013 Computer Systems and Networks

2

 Tonight
 Lab 10 due by 11:59pm

 Sun Dec 1st
 Lab 11 due by 11:59pm


MIPS Instruction Cycle

Fall 2013 Computer Systems and Networks

3

MIPS Instruction Cycle

 How does the hardware MIPS processor execute a
single instruction?

 With a 5-step instruction cycle

Fall 2013 Computer Systems and Networks

4

Instruction
Fetch

Instruction
Decode Execute Memory

Access Write Back

MIPS Instruction Cycle

 Step 1 – Instruction Fetch (IF)
 Retrieve next instruction from memory

(check the instruction cache first!)
 Program Counter (PC) register stores address of

next instruction to be retrieved/executed

Fall 2013 Computer Systems and Networks

5

Instruction
Fetch

Instruction
Decode Execute Memory

Access Write Back

MIPS Instruction Cycle

 Step 2 – Instruction Decode (ID)
 Decode instruction – what should we do?
 Retrieve input values from registers

Fall 2013 Computer Systems and Networks

6

Instruction
Fetch

Instruction
Decode Execute Memory

Access Write Back

MIPS Instruction Cycle

 Step 3 – Execute (EX)
 ALU performs arithmetic or logical operation
 Operation might be calculating a memory address

Fall 2013 Computer Systems and Networks

7

Instruction
Fetch

Instruction
Decode Execute Memory

Access Write Back

MIPS Instruction Cycle

 Step 4 – Memory Access (MEM)
 Read/write memory if necessary

(Check the data cache first!)

Fall 2013 Computer Systems and Networks

8

Instruction
Fetch

Instruction
Decode Execute Memory

Access Write Back

MIPS Instruction Cycle

 Step 5 – Write Back (WB)
 Write final result of instruction to register

if necessary

Fall 2013 Computer Systems and Networks

9

Instruction
Fetch

Instruction
Decode Execute Memory

Access Write Back

Example 1 – add $s0,$s1,$s2

1. IF: Load instruction from memory; increment PC

2. ID: Determine operation is “add”;
Load $s1 and $s2 from registers

3. EX: ALU performs addition operation

4. MEM: No operation (no-op)

5. WB: Output of ALU written to $s0

Fall 2013 Computer Systems and Networks

10

Example 2 – lw $s0,10($t1)

1. IF: Load instruction from memory, increment PC

2. ID: Determine operation is “load word”;
retrieve value of $t1 from register

3. EX: ALU calculates memory address of desired data
($t1 plus 10 sign-extended to full 32 bits)

4. MEM: Retrieve data from memory at address
calculated by ALU (check the data cache first!)

5. WB: Output of memory written to $s0

Fall 2013 Computer Systems and Networks

11

Example 3 – sw $s0,20($t1)

1. IF: Load instruction from memory, increment PC

2. ID: Determine operation is “store word”;
retrieve values of $s0 and $t1 from registers

3. EX: ALU calculates memory address of storage
location ($t1 plus 20 sign-extended to full 32 bits)

4. MEM: Store value from $s0 to memory at address
calculated by ALU (write goes to the data cache!)

5. WB: No operation (no-op)

Fall 2013 Computer Systems and Networks

12

Example 4 – beq $t1,$t2,label

1. IF: Load instruction from memory, increment PC

2. ID: Determine operation is “branch on equal”;
retrieve values of $t1 and $t2 from registers

3. EX: ALU calculates memory address of location to jump
to if the comparison is true (PC + label sign-extended to
full 32 bits); ALU also compares $t1 and $t2 for equality

4. MEM: If comparison is equal, PC = address calculated by
ALU. Otherwise, PC is unchanged

5. WB: No operation (no-op)

Fall 2013 Computer Systems and Networks

13


Pipelining

Fall 2013 Computer Systems and Networks

14

Instruction Cycle

Fall 2013 Computer Systems and Networks

15

New Goal: Run the instruction
cycle quickly and efficiently

The performance of our 5-step
instruction cycle is slow if we

only do one instruction at a time

Instruction Cycle

 A laundry analogy…
 Laundry cycle instead of instruction cycle

 Doing laundry in your residence hall
 Washing machine – 35 minutes
 Dryer – 60 minutes
 Folding / Hanging – 8 minutes

 How do you do one load of laundry the fastest?

16

Washer Dryer Fold

35 60 8

= 103
minutes

Fall 2013 Computer Systems and Networks

Instruction Cycle for Laundry

 How do you do two loads of laundry the fastest?
 Back to back?

 206 minutes total
 Leaves machines idle at different times

 Concurrently?

17

Washer Dryer Fold

35 60

Washer Dryer Fold

60 8

Total: 163 minutes

Load 1:

Load 2:

Time 

Fall 2013 Computer Systems and Networks

Pipelining

 This is pipelining
 Performing work in parallel instead of sequentially

 Goal: Keep all hardware busy
 Provides for instruction level parallelism (ILP)

 Executing more than one instruction at a time

18

Instr.

Pipeline Stage

1 IF ID EX MEM WB

2 IF ID EX MEM WB

3 IF ID EX MEM

Cycle 1 2 3 4 5 6

Instr.

Stage

1 IF ID EX MEM WB

2 IF ID EX

3

Cycle 1 2 3 4 5 6 7 8

Without Pipelining: With Pipelining:

Finish first
instruction…

… before
starting second

Fall 2013 Computer Systems and Networks

Deeper Pipelining

 We can do better than this

 (Original) Laundry Room Specifications:
 Washing machine – 35 minutes
 Dryer – 60 minutes
 Folding / Hanging – 8 minutes

 What is the bottleneck in our simple pipeline?
 Drying takes much longer than the other stages
 This slows down the entire laundry process

19

Fall 2013 Computer Systems and Networks

Pipelining / Laundry Revisited

 How can we fix it? Get two dryers
 Operate them in parallel, or …
 Operate them in series for half the time

 Each has a specialized task
 First dryer set to hot (initial drying)
 Second dryer set to cool (final drying / prevent shrinking)

20

Washer Dryer Fold

35 60

Washer Dryer Fold

60 8

Total: 163 minutes

Load 1:

Load 2:

Time 

Fall 2013 Computer Systems and Networks

Pipelining / Laundry Revisited

 How can we fix it? Get two dryers
 Operate them in parallel, or …
 Operate them in series for half the time

 Each has a specialized task
 First dryer set to hot (initial drying)
 Second dryer set to cool (final drying / prevent shrinking)

21

Washer Fold

35

Washer Fold

8

Total: 138 minutes

Load 1:

Load 2:

Hot Dry Cool Dry

Hot Dry Cool Dry

35 30 30

Fall 2013 Computer Systems and Networks

Result!

Pipelining / Laundry Revisited

 Better performance
 206 minutes  163 minutes  138 minutes
 But now we’re limited by the washer speed

 How do we fix this?
 Buy more machines, each doing smaller parts of the task

 Could I benefit from 10 machines? 100? 1000?
 Not shown in timeline: Time required to advance laundry

from one stage to the next
 The time spent moving laundry between machines could

exceed the time spent in the machines 
 System becomes increasingly complex to design 

22

Fall 2013 Computer Systems and Networks

Pipeline Challenge 1

 Ideal pipeline speedup is equal to pipeline depth
 5 stages? Program could run at best 5 times faster

 Pipeline challenge – only achieve ideal speedup if the
pipeline is perfectly balanced
 The hardware in every stage takes the exact same amount of

time to operate

 Most pipelines are not balanced
 Example: loading data from memory is slower than decoding

instruction

 Do we set processor frequency to fastest or slowest stage?
 Slowest stage – otherwise it won’t have time to finish

Fall 2013 Computer Systems and Networks

23

Pipeline Challenge 2

 Problem: We might not always be able to keep the
pipeline full of instructions

 Hazards cause pipeline conflicts and stalls
 Data hazards (dependencies)
 Structural hazards (resource conflicts)
 Control hazards (conditional branching)

Fall 2013 Computer Systems and Networks

24

Data Hazard

Fall 2013 Computer Systems and Networks

25

Program correctness depends on executing instructions
in original order

Read After Write

add $s1,$t1,$t2
add $s2,$t3,$t4
add $t4,$s1,$s2

Third add cannot
proceed until first two
are complete!

Write After Read

add $t1,$s1,$t2
add $s1,$t3,$t4

Second add cannot write
result until after first add
has read its inputs!

Write After Write

add $s1,$t1,$t2
add $s1,$t3,$t4

Second add cannot write
result until after first add
has written its result!

Structural Hazard, Control Hazard

 Structural hazard
 Part of the processor hardware is required by

two different instructions at the same time
 Example: A shared memory, shared ALU, shared

data bus, etc…

 Control hazard
 The processor needs to know which instruction

will be executed next, and it can’t until the
branch is determined

Fall 2013 Computer Systems and Networks

26

Instruction-Level Pipelining

 Hazards can cause pipeline to stall or flush
 Stall – pipeline is delayed for a cycle
 Flush – all instructions in pipeline are deleted

 Clever hardware or clever assembly programmers
(or optimizing compilers) can reduce the effects of
these hazards
 But not fully eliminate them…

Fall 2013 Computer Systems and Networks

27

Intel Pipelining

 Almost all Intel chips (286, 386, 486, etc…) have
some degree of pipelining

 Pipelining was first seriously applied to the Intel
486 chip in 1989
 Could complete an ALU instruction (coming from a

register, going to a register) every clock cycle

 Pipelining got better with the Pentium chip in 1993
 Double-wide: Two instructions are sent down the

pipeline every cycle! (Requires two ALUs, etc…)

Fall 2013 Computer Systems and Networks

28

Intel Pipelining

 Pipeline depth changed over time:
 Original Pentium: 5 stages
 Pentium 2: 12 stages
 Pentium 3: 14 stages
 Pentium 4: 20-24 stages
 Pentium 4 extreme edition: 31 stages
 Why were the pipelines getting longer?

 Today
 Core i7 has a 17-stage pipeline

Fall 2013 Computer Systems and Networks

29

MIPS Pipelining

 Like Intel, the pipeline size of the MIPS processors
has grown
 R2000 and R3000 have 5-stage pipelines
 R4000 and R4400 have 8-stage pipelines
 R10000 has three pipelines:

 5-stage pipeline for integer instructions
 7-stage pipeline for floating-point instructions
 6-state pipeline for LOAD/STORE instructions

Fall 2013 Computer Systems and Networks

30


Parallelism

Fall 2013 Computer Systems and Networks

31

Instruction-Level Parallelism

 Example program: (imagine it was in assembly)

 Assume we have a processor with “lots” of ALUs
 What instructions can be executed in parallel?
 What instructions cannot be executed in parallel?

Fall 2013 Computer Systems and Networks

32

① e = a + b;
② f = c + d;
③ g = e * h;

Instruction-Level Parallelism

 Example program 2: (imagine it was in assembly)

 Assume we have a processor with “lots” of ALUs
 What instructions can be executed in parallel?
 What instructions cannot be executed in parallel?

 If we tried really hard, could we run them in parallel?

Fall 2013 Computer Systems and Networks

33

① e = a + b;
② f = c + d;
③ if(e > f)
④ a = 15;
⑤ else
⑥ a = 18;
⑦ g = h + 30;

Instruction-Level Parallelism

 This is instruction-level parallelism
 Finding instructions in the same program that can be

executed in parallel
 Different from multi-core parallelism, which

executes instructions from different programs in
parallel

 You can do this in a single “core” of a CPU
 Adding more ALUs to the chip is easy
 Finding the parallelism to exploit is harder…
 Getting the data to the ALUs is harder…

Fall 2013 Computer Systems and Networks

34

Instruction-Level Parallelism

 Instruction-level parallelism is good 
 Let’s find as much of it as possible and use it to

decrease execution time!

 Two competing methods:
 Superscalar: the hardware finds the parallelism
 VLIW: the compiler finds the parallelism

 Both designs have multiple execution units
(e.g. ALUs) in a single processor core

Fall 2013 Computer Systems and Networks

35

MIMD – Superscalar

 Superscalar designs – the hardware finds the
instruction-level parallelism while the program is
running

 Challenges
 CPU instruction fetch unit must simultaneously

retrieve several instructions from memory
 CPU instruction decoding unit determines which of

these instructions can be executed in parallel and
combines them accordingly
 Complicated!

Fall 2013 Computer Systems and Networks

36

MIMD – VLIW

 Very long instruction word (VLIW) designs – the compiler
finds the instruction-level parallelism before the program
executes
 The compiler packs multiple instructions into one long

instructions that the hardware executes in parallel

 Arguments:
 For: Simplifies hardware, plus the compiler can better

identify instruction dependencies (it has more time to work)
 Against: Compilers cannot have a view of the run time code,

and must plan for all possible branches and code paths

 Examples: Intel Itanium, ATI R600-R900 GPUs

Fall 2013 Computer Systems and Networks

37

Instruction-Level Parallelism

 Back to the example
program:

 More techniques for ILP

 Speculative execution
(or branch prediction)
 Guess that e>f, and

execute line 4
immediately…

 Out-of-order execution
 Execute line 7 before 4-6,

since it doesn’t depend on
them

Fall 2013 Computer Systems and Networks

38

① e = a + b;
② f = c + d;
③ if(e > f)
④ a = 15;
⑤ else
⑥ a = 18;
⑦ g = h + 30;

	Computer Systems and Networks
	Lab Schedule
	MIPS Instruction Cycle
	MIPS Instruction Cycle
	MIPS Instruction Cycle
	MIPS Instruction Cycle
	MIPS Instruction Cycle
	MIPS Instruction Cycle
	MIPS Instruction Cycle
	Example 1 – add $s0,$s1,$s2
	Example 2 – lw $s0,10($t1)
	Example 3 – sw $s0,20($t1)
	Example 4 – beq $t1,$t2,label
	Pipelining
	Instruction Cycle
	Instruction Cycle
	Instruction Cycle for Laundry
	Pipelining
	Deeper Pipelining
	Pipelining / Laundry Revisited
	Pipelining / Laundry Revisited
	Pipelining / Laundry Revisited
	Pipeline Challenge 1
	Pipeline Challenge 2
	Data Hazard
	Structural Hazard, Control Hazard
	Instruction-Level Pipelining
	Intel Pipelining
	Intel Pipelining
	MIPS Pipelining
	Parallelism
	Instruction-Level Parallelism
	Instruction-Level Parallelism
	Instruction-Level Parallelism
	Instruction-Level Parallelism
	MIMD – Superscalar
	MIMD – VLIW
	Instruction-Level Parallelism

