

Computer Systems and Networks
ECPE 170 – University of the Pacific

MIPS Assembly
(Functions)

Lab Schedule

Activities
 Today

 Discuss: MIPS Functions
 Lab 10

 Next week
 Lab 10

Assignments Due
 Tues Nov 12th

 Lab 9 due by 11:59pm

 Tues Nov 19th
 Lab 10 due by 11:59pm

Fall 2013 Computer Systems and Networks

2

Fall 2013 Computer Systems and Networks

3

Single Step
Button!

(Advance by 1 instruction)


MIPS Functions

Fall 2013 Computer Systems and Networks

4

Function Requirements?

 What happens when we call a function?
1. Place function arguments in standard location where

function can find them
2. Save current program location to return to later

(the “Program Counter” register)
3. Jump to the function location
4. Function runs using provided arguments
5. Function produces output (return value) and saves it

in standard location
6. Jump to original program location (return)

1. Technically, +1 instruction

Fall 2013 Computer Systems and Networks

5

Function Requirements

 Can a function change local variables of its calling
function?

 No! The function operates in its own “bubble”

 What happens if the function changes $s0 which
was also used by the calling function?

 Problem! Your function has corrupted the calling
function

Fall 2013 Computer Systems and Networks

6

Functions in Assembly

Fall 2013 Computer Systems and Networks

7

In assembly, you must do all the background
work for functions that the compiler did
automatically in a higher level language

Functions still allow for code re-use (good!),
but they’re more complicated than in C or C++

Registers

Fall 2013 Computer Systems and Networks

8

Name Use

$zero Constant value: ZERO

$s0-$s7 Local variables
(Convention: These are saved by the function if they are needed)

$t0-$t9 Temporary results
(Convention: These are saved by the caller if they are needed)

$a0-$a3 Arguments to pass to function (max of 4)

$v0-$v1 Return value to obtain from function (max of 2)

$ra Return address of function

$sp Stack pointer (current top of stack)

More Jumps

 Jump and Link
(side effect: $ra stores address of next instruction)

 Jump Register
(destination address is stored in <reg1>

Fall 2013 Computer Systems and Networks

9

jal <destination>

jr <reg1>

Use this to call a function!

Use this to return from a function!

Task : Write Code

 Place arguments
in $a0-$a3

 Place return values
in $v0-$v1

 Return address saved
automatically in $ra

 Ignore the stack for this
example. (Thus, the function
will destroy registers used by
calling function)

Fall 2013 Computer Systems and Networks

10

#include <stdio.h>

int function(int a);

int main()
{
 int x=5;
 int y;

 y = function(x);

 printf("y=%i\n", y);

 return 0;
}

int function(int a)
{
 return 3*a+5;
}

Fall 2013 Computer Systems and Networks

11

Simple routine to demo functions
NOT using a stack in this example.
Thus, the function does not preserve values
of calling function!

--

 .text

 .globl main
main:
 # Register assignments
 # $s0 = x
 # $s1 = y

 # Initialize registers
 lw $s0, x # Reg $s0 = x
 lw $s1, y # Reg $s1 = y

 # Call function
 move $a0, $s0 # Argument 1: x ($s0)
 jal fun # Save current PC in $ra, and jump to fun
 move $s1,$v0 # Return value saved in $v0. This is y ($s1)

 # Print msg1
 li $v0, 4 # print_string syscall code = 4
 la $a0, msg1
 syscall

 # Print result (y)
 li $v0,1 # print_int syscall code = 1
 move $a0, $s1 # Load integer to print in $a0
 syscall

 # Print newline
 li $v0,4 # print_string syscall code = 4
 la $a0, lf
 syscall

 # Exit
 li $v0,10 # exit
 syscall

--

 # FUNCTION: int fun(int a)
 # Arguments are stored in $a0
 # Return value is stored in $v0
 # Return address is stored in $ra (put there by jal instruction)
 # Typical function operation is:

fun: # Do the function math
 li $s0, 3
 mul $s1,$s0,$a0 # s1 = 3*$a0 (i.e. 3*a)
 addi $s1,$s1,5 # 3*a+5

 # Save the return value in $v0
 move $v0,$s1

 # Return from function
 jr $ra # Jump to addr stored in $ra

--

 # Start .data segment (data!)
 .data
x: .word 5
y: .word 0
msg1: .asciiz "y="
lf: .asciiz "\n"

Preserving Registers

 What if we don’t want to destroy registers used by
the calling function?

 Need to save those registers somewhere
while our function runs (like memory!)

 A stack is a good structure for this

Fall 2013 Computer Systems and Networks

12

The Stack

 Stack is a data structure stored
in memory

 $sp (“Stack Pointer”) points to
top of stack
 But stack grows down in

memory!

 Example
 Push 4 to stack
 Push 5 to stack
 Pop (5 from stack)
 Pop (4 from stack)

Fall 2013 Computer Systems and Networks

13

Memory $sp

The Stack

 Stack is a data structure stored
in memory

 $sp (“Stack Pointer”) points to
top of stack
 But stack grows down in

memory!

 Example
 Push 4 to stack
 Push 5 to stack
 Pop (5 from stack)
 Pop (4 from stack)

Fall 2013 Computer Systems and Networks

14

Memory

$sp 4

The Stack

 Stack is a data structure stored
in memory

 $sp (“Stack Pointer”) points to
top of stack
 But stack grows down in

memory!

 Example
 Push 4 to stack
 Push 5 to stack
 Pop (5 from stack)
 Pop (4 from stack)

Fall 2013 Computer Systems and Networks

15

Memory

$sp

4

5

The Stack

 Stack is a data structure stored
in memory

 $sp (“Stack Pointer”) points to
top of stack
 But stack grows down in

memory!

 Example
 Push 4 to stack
 Push 5 to stack
 Pop (5 from stack)
 Pop (4 from stack)

Fall 2013 Computer Systems and Networks

16

Memory

$sp 4

The Stack

 Stack is a data structure stored
in memory

 $sp (“Stack Pointer”) points to
top of stack
 But stack grows down in

memory!

 Example
 Add 4 to stack
 Add 5 to stack
 Pop
 Pop

Fall 2013 Computer Systems and Networks

17

Memory $sp

The Stack

 How would we modify previous solution to use a
stack?

Fall 2013 Computer Systems and Networks

18

Fall 2013 Computer Systems and Networks

19

Simple routine to demo functions
NOT using a stack in this example.
Thus, the function does not preserve values
of calling function!

--

 .text

 .globl main
main:
 # Register assignments
 # $s0 = x
 # $s1 = y

 # Initialize registers
 lw $s0, x # Reg $s0 = x
 lw $s1, y # Reg $s1 = y

 # Call function
 move $a0, $s0 # Argument 1: x ($s0)
 jal fun # Save current PC in $ra, and jump to fun
 move $s1,$v0 # Return value saved in $v0. This is y ($s1)

 # Print msg1
 li $v0, 4 # print_string syscall code = 4
 la $a0, msg1
 syscall

 # Print result (y)
 li $v0,1 # print_int syscall code = 1
 move $a0, $s1 # Load integer to print in $a0
 syscall

 # Print newline
 li $v0,4 # print_string syscall code = 4
 la $a0, lf
 syscall

 # Exit
 li $v0,10 # exit
 syscall

--

 # FUNCTION: int fun(int a)
 # Arguments are stored in $a0
 # Return value is stored in $v0
 # Return address is stored in $ra (put there by jal instruction)
 # Typical function operation is:

fun: # This function overwrites $s0 and $s1
 # We should save those on the stack
 # This is PUSH’ing onto the stack
 addi $sp,$sp,-4 # Adjust stack pointer
 sw $s0,0($sp) # Save $s0
 addi $sp,$sp,-4 # Adjust stack pointer
 sw $s1,0($sp) # Save $s1

 # Do the function math
 li $s0, 3
 mul $s1,$s0,$a0 # s1 = 3*$a0 (i.e. 3*a)
 addi $s1,$s1,5 # 3*a+5

 # Save the return value in $v0
 move $v0,$s1

 # Restore saved register values from stack in opposite order
 # This is POP’ing from stack
 lw $s1,0($sp) # Restore $s1
 addi $sp,$sp,4 # Adjust stack pointer
 lw $s0,0($sp) # Restore $s0
 addi $sp,$sp,4 # Adjust stack pointer

 # Return from function
 jr $ra # Jump to addr stored in $ra

--

 # Start .data segment (data!)
 .data
x: .word 5
y: .word 0
msg1: .asciiz "y="
lf: .asciiz "\n"


Lab 10

Fall 2013 Computer Systems and Networks

20

Lab 10 – MIPS Assembly
Programming (Basic)

 Consists of five small programs which demonstrate
basic assembly concepts
 Arithmetic
 Branches
 Loops
 Arrays
 I/O, Loops and Arrays

 Use QtSpim to test

Fall 2013 Computer Systems and Networks

21

	Computer Systems and Networks
	Lab Schedule
	Slide Number 3
	MIPS Functions
	Function Requirements?
	Function Requirements
	Functions in Assembly
	Registers
	More Jumps
	Task : Write Code
	Slide Number 11
	Preserving Registers
	The Stack
	The Stack
	The Stack
	The Stack
	The Stack
	The Stack
	Slide Number 19
	Lab 10
	Lab 10 – MIPS Assembly �Programming (Basic)

