7
Computer Systems and Networks

of the Pacific

MIPS Assembly
(Functions)

Lab Schedule

Activities Assignments Due
Today Tues Nov 12t
#2 Discuss: MIPS Functions 2 Lab9dueby11:59pm
2 Lab 10

Tues Nov 19th

Next week ? Lab10due by 11:59pm
2 Lab 10

EF & d S B #F F m

FP Regs
Int Regs [16]

.Il.'li:;ilgil[;;] | Data i
i ®E Text

[00400000)
L [QD400004]
BadVAddr - 0 [00400008

= 3k] Lobsu00ds
[00400010)
= 0 [0D400014]
[00400018)
[0Cq0001c]
[00400020]

w
5
E
[~]
|
l'-
[=
,'_'
=
5
o=

[z0] = ©
[at] =
Lo =0

: [¥l] = O (80000180}
R4 [aD] = O (80000184}
:) [S
1 [.1] = I -\.|I.|_FI:h "*_'.‘7
I [a2] = TEEffded (8000018

f (8000018

[a2] = 0

EEEEEEREEE LE

2ES
L~]

[R12
{R13
| R14
| R1S
[R1g

(R18

| R25
| p2s
(27

[g0] = O
[t1] = 0
[t2] = O
[£3] = 0
[td4] = O
[£5] = O
[x&] = 0
[ET]) = O
[s0] = O
[81] = O
[#2] = 0
[53] = O
[s4] = O
[#3] = O
[a€] = D
[27] = ©
[t8] = O
[t3] = O
[kO] = O
[kl] = ©

"
n
(=R -
n
H
oW 0 oo

[aopoo1s
[BOOOOL24]

(8000015
[B0000L0c)
[B0000Lad]

[800001a4)

|
=

[B0DGOLcE]
[B0000Len]

0oo0Lda]

Ry s
UOGULa4s |
P
LAk

1018)

oo O O

i e

| Copyright 1990-2012, James R. Larus.

| All Rights Reserved.

| SPIM is distributed under a BSD license.

{ See the file README for a full copyright notice.

[

S L ek L

Rl bl e &5 e

Psar Text

1w 54, 0(529)

Segment [00400000]..[00440000]

- IET] = J.
das 4N AL

addiu $5, 529,
addig 56, 55, 4
=11 32, 54, 2

addu 56, 56, 52
jal OxO00O0000

ori %2, %0, 1o

syscall

Eernel

addu 527, 50, 5

Single Step
Button!

(Advance by 1 instruction)

lui 51, -28672

sw 52, 512(51)
lui 51, -28672

aw 54, 516(51)
mfc 526, 513
srl 54, 526, 2
andi 54, 54, 31
erd 52, 50, 4

lul 54, -28672 [__ml_]

syscall

ori 52, %0, 1
srl 54, 526, 2
andi 54, 54, 31
syscall

sl 52, 50, 4

andi 54, 526, &0

lui 51, -28672
addu 51, 51, 54
1w 54, 3I84(51)
nop

syscall

ori 51, 50, 24

R R e T T T T R T PR T

S Ry W

Wiy =W 21U

?3: sw Fal a2

95 mfcl 5
96: arl 5a
@7: andi 5§
102 14 5w
102: la 5a
IR3: zyaca
105: 1Ii &v
106 =xrd J
107: andi
108 =¢=s
1ig: Jl v
] roandi
'y 1w 3a

and w= can'e

re-ant FARE

we need to use theae

(=T

==}

rr:’] nt_1incs
act Excelooe

(=B =

_excpi{fal)

FL exception

7
MIPS Functions

Function Requirements?

What happens when we call a function?

1.

Place function arguments in standard location where
function can find them

Save current program location to return to later
(the “Program Counter” register)

Jump to the function location
Function runs using provided arguments

Function produces output (return value) and saves it
in standard location

Jump to original program location (return)
Technically, +1 instruction

Function Requirements

Can a function change local variables of its calling
function?

No! The function operates in its own “bubble”

What happens if the function changes $s0 which
was also used by the calling function?

Problem! Your function has corrupted the calling
function

Functions in Assembly

In assembly, you must do all the background
work for functions that the compiler did
automatically in a higher level language

Registers

Name
$zero
$s0-$s7

$t0-$t9

$a0-%a3
$vO0-$v1
$ra

$sp

Use
Constant value: ZERO

Local variables

(Convention: These are saved by the function if they are needed)

Temporary results

(Convention: These are saved by the caller if they are needed)

Arguments to pass to function (max of 4)

Return value to obtain from function (max of 2) 4/@

Return address of function

Stack pointer (current top of stack)

W

More Jumps

Jump and Link
(side effect: $ra stores address of next instruction)

jal <destination>

Use this to call a function!

Jump Register
(destination address is stored in <regl1>

Jr <regl>

Use this to return from a function!

Task : Write Code

#include <stdio.h>
int function(int a);
int main()
{

int x=5;

int y;

y = function(x);

printf("y=%i\n", y);

return O;

}

int function(int a)

{

return 3*a+5;

}

Place arguments
in $a0-%a3

Place return values
in $v0-$v1

Return address saved
automatically in $ra

lgnore the stack for this
example. (Thus, the function
will destroy registers used by
calling function)

Simple routine to demo functions

NOT using a stack in this example.

Thus, the function does not preserve values
of calling function!

H o
.text
_globl main
main:
Register assignments
$s0 = x
$sl =y

Initialize registers
Iw $s0, x # Reg $sO
Iw $s1, y # Reg $sl

Call function

move $a0, $sO # Argument 1: x ($s0)

jal fun # Save current PC in $ra, and jump to fun
move $s1,%$v0 # Return value saved in $vO0. This is y ($sl)
Print msgl

li $v0, 4 # print_string syscall code = 4

la $a0, msgl

syscall

Print result (y)

li $v0,1 # print_int syscall code = 1

move $a0, $si # Load integer to print in $a0

syscall

Print newline

li $v0,4 # print_string syscall code = 4

la $a0, If

syscall

Exit

li $v0,10 # exit

syscall

fun:

X:
y:
msgl:
1f:

11

FUNCTION: int fun(int a)

Arguments are stored in $a0

Return value is stored in $v0

Return address is stored in $ra (put there by jal instruction)
Typical function operation is:

Do the function math

li $s0, 3
mul $s1,$s0,%a0# s1 = 3*$a0 (i.e. 3*a)
addi $s1,%$s1,5 # 3*at+5

Save the return value in $vO
move $v0,$sl

Return from function
jr $ra # Jump to addr stored in $ra

Start .data segment (datal)
.data

.word 5

.word O

.asciiz "y="

.asciiz'"\n"

Preserving Registers

What if we don’t want to destroy registers used by
the calling function?

Need to save those registers somewhere
while our function runs (like memory!)

A stack is a good structure for this

The Stack

$sp —
Stack is a data structure stored Memory

in memory

$sp (“Stack Pointer”) points to
top of stack

? But stack grows down in
memory!

Example

? Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N N D

Pop (4 from stack)

The Stack

Stack is a data structure stored Memory
in memory $sp —— 4

$sp (“Stack Pointer”) points to
top of stack

? But stack grows down in
memory!

Example

? Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N N D

Pop (4 from stack)

The Stack

Stack is a data structure stored
in memory

$sp (“Stack Pointer”) points to
top of stack

? But stack grows down in
memory!

Example

? Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N N D

Pop (4 from stack)

The Stack

Stack is a data structure stored Memory
in memory $sp —— 4

$sp (“Stack Pointer”) points to
top of stack

? But stack grows down in
memory!

Example

? Push 4 to stack
Push 5 to stack
Pop (5 from stack)

N N D

Pop (4 from stack)

The Stack

Stack is a data structure stored
in memory

$sp (“Stack Pointer”) points to
top of stack

? But stack grows down in
memory!

Example
? Add 4 to stack
Add 5 to stack
Pop

N N D

Pop

$sp ——

Memory

The Stack

How would we modify previous solution to use a
stack?

19
I 4

Simple routine to demo functions
NOT using a stack in this example.
Thus, the function does not preserve values
of calling function!
B o o H
_text # FUNCTION: int fun(int a)
Arguments are stored in $a0
) -globl main # Return value is stored in $v0
main: i i # Return address is stored in $ra (put there by jal instruction)
Register assignments # Typical function operation is:
$s0 = x
$sl =y fun: # This function overwrites $s0 and $sl1
We should save those on the stack
Initialize registers # This is PUSH”ing onto the stack
Iw $s0, x # Reg $s0 = x addi $sp,$sp,-4# Adjust stack pointer
Iw $s1, y # Reg $s1 = y sw $s0,0($sp) # Save $s0
addi $sp,$sp,-4# Adjust stack pointer
Call function sw $s1,0($sp) # Save $sl
move $a0, $sO # Argument 1: x ($s0)
jal fun # Save current PC in $ra, and jump to fun # Do the function math
move $s1,%$v0 # Return value saved in $v0. This is y ($sl) i $s0, 3
mul $s1,$s0,%a0# s1 = 3*$a0 (i.e. 3*a)
Print msgl addi $s1,%$s1,5 # 3*a+5
li $v0, 4 # print_string syscall code = 4
la $a0, msgl # Save the return value in $vO
syscall move $vO,$sl
Print result (y) # Restore saved register values from stack in opposite order
li $v0,1 # print_int syscall code = 1 # This is POP”ing from stack
move $a0, $si # Load integer to print in $a0 Iw $s1,0($sp) # Restore $s1
syscall addi $sp,$sp,4 # Adjust stack pointer
Iw $s0,0($sp) # Restore $s0
Print newline addi $sp,$sp,4 # Adjust stack pointer
li $v0,4 # print_string syscall code = 4
la $a0, If # Return from function
syscall jr $ra # Jump to addr stored in $ra
Exit S
li $v0,10 # exit
syscall # Start .data segment (datal)
.data
X: -word 5
y: -word O
msgl: .asciiz "y="
1f: .asciiz'"\n"

20

Lab 10 — MIPS Assembly

Programming (Basic

Consists of five small programs which demonstrate
basic assembly concepts

Arithmetic
Branches
Loops
Arrays

N N N N DY

1/0, Loops and Arrays

Use QtSpim to test

	Computer Systems and Networks
	Lab Schedule
	Slide Number 3
	MIPS Functions
	Function Requirements?
	Function Requirements
	Functions in Assembly
	Registers
	More Jumps
	Task : Write Code
	Slide Number 11
	Preserving Registers
	The Stack
	The Stack
	The Stack
	The Stack
	The Stack
	The Stack
	Slide Number 19
	Lab 10
	Lab 10 – MIPS Assembly �Programming (Basic)

