

Computer Systems and Networks

ECPE 170 – University of the Pacific

Endianness

Lab Schedule

Activities

- **This Week**
 - Zab 9 Endianness
- Next Week... and Beyond!
 - Assembly Programming (Labs 10 & 11)

Assignments Due

- **Tuesday Nov 5**th
 - **7** Lab 8 due by 11:59pm
- **Tuesday Nov 12th**
 - **7** Lab 9 due by 11:59pm

Endianness

In typical computer memory, each address (location) stores one byte

- If we have a one-byte integer, how is that stored in memory?
- If we have a two-byte integer, how is that stored in memory?
- If we have a four-byte integer, how is that stored in memory?

Endianness = Byte Ordering

Endianness Example

- 32-bit hexadecimal number 0x12345678
- Composed of 4 bytes: 0x12 0x34 0x56 0x78 (MSB) (LSB)
- **Two possible arrangements:**

Address	"Option A"	"Option B"		
0	0x12	0x78 0x56		
1	0x34			
2	0x56	0x34		
3	0x78	0x12		

Endianness Example

- 32-bit hexadecimal number 0x12345678
- Composed of 4 bytes: 0x12 0x34 0x56 0x78 (MSB) (LSB)
- **Two possible arrangements:**
 - **7** Big Endian
 - **7** Little Endian

Address	Big Endian	Little Endian		
0	0x12 (MSB)	0x78 (LSB)		
1	0x34	0x56		
2	0x56	0x34		
3	0x78	0x12		

Endianness

- How is DEADBEEF₁₆ stored in little and big endian formats at address 21C₁₆?
 - ↗ Little endian
 - **7** 21C₁₆=EF₁₆
 - **7** 21D₁₆=BE₁₆
 - **7** 21E₁₆ =AD₁₆
 - **∂** 21F₁₆=DE₁₆
 - **7** Big endian
 - **7** 21C₁₆=DE₁₆
 - ✓ 21D₁₆=AD₁₆
 - **∂** 21E₁₆ = BE₁₆
 - **∂** 21F₁₆=EF₁₆

Big Endian –vs– Little Endian

Big-Endian CPU

- Most significant byte (MSB)comes first (stored in lower memory address)
- Examples
 - Motorola 68000
 - Java virtual machine
 - IBM PowerPC (by default, can also be little endian)

Little-Endian CPU

- Least significant byte (LSB) comes first (stored in lower memory addresses)
- **7** Examples
 - ↗ Intel x86/x86-64
 - DEC Alpha
 - ARM (by default, also can be big endian)

Etymology of "Endian"

- Origin in 1980s
- Reference to Swift's Gulliver's Travels, in which the Lilliputians were divided into two camps:
 - Those who ate their eggs by opening the 'big' end
 - Those who ate them by opening the 'little' end
- In other words, a trivial distinction

Do I Care?

- When do I need to care that some computers are big-endian and others are little endian?
 - What happens if I open big-endian data on a littleendian computer?
- Endianness must be considered whenever you are sharing data between different computer systems

 - Reading/writing data files to <u>network</u>

Best Practices

Pick one format and stick with it!

- Example: Data sent over the network will always be in big-endian format regardless of who sends it
 - Networks are big-endian "by tradition"
- Example: Data written to disk will always be in *little-endian* format regardless of who writes it
- Convert between data storage/transfer format and internal representation as needed
 - Example: Little-endian machines convert to big-endian before sending data onto the network (and convert back upon receiving data from the network)

Examples in Industry

Little-Endian Format		Big-Endian Format		Varia	Variable or Bi-Endian Format	
BMP	(Windows* & OS/2)	PSD	(Adobe Photoshop*)	DXF	(AutoCAD*)	
GIF	(A (). A)	IMG	(GEM Raster*)	PS	(Postscript*, 8 bit interpreted text, no	
FLI	(Autodesk Animator*)	JPEG,	JPG		Endian issue)	
PCX QTM	(PC Paintbrush*) (MAC Quicktime*)	MacPai SGI	int (Silicon Graphics*)	POV	(Persistence of Visionraytracer*)	
RTF	(Rich Text Format)	Sun Raster		RIFF	(WAV & AVI*)	
		WPG	(WordPerfect*)	TIFF		
				XWD	(X Window Dump*)	
	Bus Protocols		Network Protocols		Bus Protocols	
Infiniband		TCP/IP		GMII	(8 bit wide bus, no	
PCI Express		UDP			Endian issue)	
PCI-32/PCI-64						
USB						

Table 2- Common file formats

http://download.intel.com/design/intarch/papers/endian.pdf

12

- Lab 9 also involves lots of benchmarking
 - Comparing performance of several different algorithms that accomplish the same task
- Why is is important to run these benchmarks on an otherwise idle system, and not switch backand-forth to other programs while the test runs?