

Computer Systems and Networks
ECPE 170 – University of the Pacific

Performance
Optimization

Lab Schedule

Activities
 Today

 Background discussion
 Lab 6 – Performance

Optimization

 Thursday
 Lab 6 – Performance

Optimization

Assignments Due
 Tues, Oct 8th

 Lab 5 due by 11:59pm

 Thurs, Oct 10th
 Midterm Exam

 Tues, Oct 15th
 Lab 6 due by 11:59pm

Fall 2013 Computer Systems and Networks

2

Co-Person of the Day: Fran Allen

 IBM Research: 1957-2002

 Expert in optimizing
compilers (i.e. compilers
that optimize the program
they produce)

 Expert in parallelization

 Winner of ACM Turing
Award, 2006
 First female winner!

Fall 2013 Computer Systems and Networks

3

C0-Person of the Day: Donald Knuth

Fall 2013 Computer Systems and Networks

4

 Author, The Art of Computer
Programming
 Algorithms, algorithms,

and more algorithms!

 Creator of TeX typesetting
system

 Winner, ACM Turing Award,
1974

LaTeX – Input

Fall 2013 Computer Systems and Networks

5

\documentclass[12pt]{article}
\usepackage{amsmath}
\title{\LaTeX}
\date{}
\begin{document}
 \maketitle
 \LaTeX{} is a document preparation system for the \TeX{}
 typesetting program. It offers programmable desktop publishing
 features and extensive facilities for automating most aspects of
 typesetting and desktop publishing, including numbering and
 cross-referencing, tables and figures, page layout, bibliographies,
 and much more. \LaTeX{} was originally written in 1984 by Leslie
 Lamport and has become the dominant method for using \TeX; few
 people write in plain \TeX{} anymore. The current version is
 \LaTeXe.

 % This is a comment; it will not be shown in the final output.
 % The following shows a little of the typesetting power of LaTeX:
 \begin{align}
 E &= mc^2 \\
 m &= \frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}
 \end{align}
\end{document}

LaTeX – Output

Fall 2013 Computer Systems and Networks

6

Side Note:

LATEX works great in version
control systems!

Quotes – Donald Knuth

Fall 2013 Computer Systems and Networks

7

“Computer programming is an art, because it applies
accumulated knowledge to the world, because it requires
skill and ingenuity, and especially because it produces
objects of beauty. A programmer who subconsciously
views himself as an artist will enjoy what he does and will
do it better.” – Donald Knuth

“Random numbers should not be generated with a
method chosen at random.” – Donald Knuth

Quotes – Donald Knuth

Fall 2013 Computer Systems and Networks

8

“People who are more than
casually interested in
computers should have at
least some idea of what the
underlying hardware is like.
Otherwise the programs they
write will be pretty weird.”
– Donald Knuth

Remember this when we’re learning MIPS
assembly in Labs 10 and 11!


Performance Optimization

Fall 2013 Computer Systems and Networks

9

Vote

 Who will do a better job improving program
performance?

 The compiler -vs- The programmer

Fall 2013 Computer Systems and Networks

10

Lab 6 Goals

1. What can the compiler do for programmers to
improve performance?

2. What can programmers do to improve
performance?

Fall 2013 Computer Systems and Networks

11


The Compiler

Fall 2013 Computer Systems and Networks

12

Compiler Goals

 What are the compiler’s goals with optimization off?

 Obvious
 Generate binary (executable) that produces correct output

when run
 Compile fast

 Less Obvious:
 Make debugging produce expected results!
 Statements are independent

 If you stop the program with a breakpoint between statements,
you can then assign a new value to any variable or change the
program counter to any other statement in the function and get
exactly the results you expect from the source code

Fall 2013 Computer Systems and Networks

13

Compiler Goals

 What are the compiler’s goals with optimization on?

 Reduce program code size

 Reduce program execution time

 These may be mutually exclusive!

Fall 2013 Computer Systems and Networks

14

Optimization Tradeoffs

 What might we lose when we turn on
optimization?

 Compilation will take a lot longer

 Debugging is harder

Fall 2013 Computer Systems and Networks

15

Compiler Optimizations

 Inline Functions  Pros?

 Cons?

Fall 2013 Computer Systems and Networks

16

int max(int a, int b)
{
 if(a>b)
 return a;
 else
 return b;
}

max1 = max(w,x);
max2 = max(y,z);
printf("%i %i\n",
 max1, max2);

if(w>x) max1 = w;
else max1 = x;

if(y>z)max2 = y;
else max2 = z;

printf("%i %i\n",
 max1, max2);

Lower overhead

Bigger binary
(except for tiny functions – like this?)

Compiler Optimizations

 What specific overhead
exists here?

 Calling a function
 Save variables in the

processor (“registers”) to
memory (in the stack)

 Jump to the function
 Create new stack space for

function and its local
variables

 Returning from function
 Load old values from stack
 Jump to prior location

Fall 2013 Computer Systems and Networks

17

int max(int a, int b)
{
 if(a>b)
 return a;
 else
 return b;
}

Compiler Optimizations

 Unroll Loops  Pros?

 Cons?

Fall 2013 Computer Systems and Networks

18

int x;
for (x = 0; x < 100; x++)
{
 delete(x);
}

int x;
for (x = 0; x < 100; x+=5)
{
 delete(x);
 delete(x+1);
 delete(x+2);
 delete(x+3);
 delete(x+4);
}

Lower overhead
Parallelism (potentially)

Bigger binary

Compiler Optimizations

 What specific loop
overhead exists here?

 Top of loop
 Compare x against 100
 If less than, jump to …
 Otherwise, jump to…

 Bottom of loop
 Increment x by 1
 Jump to top of loop

 Impact on Branch Predictor
(CPU microarchitecture)

Fall 2013 Computer Systems and Networks

19

int x;
for (x = 0; x < 100; x++)
{
 delete(x);
}

Compiler Optimizations

 A large number of common compiler optimizations
won’t make sense until we learn assembly code
later this semester
 The compiler is optimizing the assembly code, not

the high-level source code

Fall 2013 Computer Systems and Networks

20


The Programmer

Fall 2013 Computer Systems and Networks

21

The Compiler –vs– The Programmer

 Humans can do a better job at optimizing code than
the compiler
 Tradeoff: many developer-hours of time

 Big picture idea: The compiler must be safe and
only make optimizations that function for all
possible data sets.
 Even if the programmer knows that a particular

corner case cannot happen, the compiler doesn't
know that

Fall 2013 Computer Systems and Networks

22

The Compiler –vs– The Programmer

 Is this optimization safe for
a compiler to do?

 Twiddle1() needs 6 memory
accesses
 2x read xp
 2x read yp
 2x write xp

 Twiddle2() needs 3 memory
accesses
 Read xp
 Read yp
 Write xp

Fall 2013 Computer Systems and Networks

23

void twiddle1(int *xp, int *yp)
{
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(int *xp, int *yp)
{
 *xp += 2 * *yp;
}

The Compiler –vs– The Programmer

 What if *xp and *yp pointed to the same memory
address?

 Twiddle1()
 *xp += *xp;
 *xp += *xp; // *xp increased 4x

 Twiddle2()
 *xp += 2 * *xp; // *xp increased 3x

 This is memory aliasing (two pointers to the same
address), and is hard for compilers to detect
 But the programmer can know whether aliasing is a

concern!

Fall 2013 Computer Systems and Networks

24

The Compiler –vs– The Programmer

 Is this optimization safe for a compiler to do?

Fall 2013 Computer Systems and Networks

25

int f();

int func1() {
 return f() + f() + f() + f();
}

int func2() {
 return 4*f();
}

The Compiler –vs– The Programmer

 Depends on what f() does!

 With func1(): 0+1+2+3 = 6

 With func2(): 4*0 = 0

 Hard for compiler to detect side effects

Fall 2013 Computer Systems and Networks

26

int counter() = 0;

int f()
{
 return counter++;
}

The Compiler –vs– The Programmer

 Compare two functions that convert a string to
lowercase

Fall 2013 Computer Systems and Networks

27

void lower1(char *s)
{
 int i;

 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

void lower2(char *s)
{
 int i;
 int len = strlen(s);

 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

 Could the compiler make
this optimization for us?

 What does strlen() do
again?

The Compiler –vs– The Programmer

 Could the compiler make this optimization for us?

 Very hard!
 strlen() checks the elements of each string…
 … and the string is being changed as each letter is

set to lowercase
 Would need to determine that the null character is

not being set earlier or later in string!

Fall 2013 Computer Systems and Networks

28

The Compiler –vs– The Programmer

 An awesome compiler won’t make up for a poor
programmer
 No compiler will ever replace a lousy bubble sort

algorithm with a good merge sort algorithm

Fall 2013 Computer Systems and Networks

29

Programmer Optimizations

 Third part of lab will step you through six code
optimizations

1. Code motion
2. Reducing procedure calls
3. Eliminating memory accesses
4. Unrolling loops x2
5. Unrolling loops x3
6. Adding parallelism

Fall 2013 Computer Systems and Networks

30

Programmer Optimizations

 Should we use these optimizations everywhere?

 Beware of premature optimization! Only spend
effort optimizing if the performance monitoring
tools point out that a particular algorithm/function
is a bottleneck.

 “Premature optimization is the root of all evil (or at
least most of it) in programming.” - Donald Knuth

 Amdahl's law

Fall 2013 Computer Systems and Networks

31

Amdahl’s Law

 The overall performance of a system is a result of
the interaction of all of its components

 System performance is most effectively improved
when the performance of the most heavily used
components is improved - Amdahl’s Law

where S is the overall speedup;
f is the fraction of work performed by a
faster component; and
k is the speedup of the faster component

Fall 2013 Computer Systems and Networks

32

Fall 2013 Computer Systems and Networks

33

http://en.wikipedia.org/wiki/Amdahl's_law

http://en.wikipedia.org/wiki/Amdahl's_law
http://en.wikipedia.org/wiki/Amdahl's_law

	Computer Systems and Networks
	Lab Schedule
	Co-Person of the Day: Fran Allen
	C0-Person of the Day: Donald Knuth
	LaTeX – Input
	LaTeX – Output
	Quotes – Donald Knuth
	Quotes – Donald Knuth
	Performance Optimization
	Vote
	Lab 6 Goals
	The Compiler
	Compiler Goals
	Compiler Goals
	Optimization Tradeoffs
	Compiler Optimizations
	Compiler Optimizations
	Compiler Optimizations
	Compiler Optimizations
	Compiler Optimizations
	The Programmer
	The Compiler –vs– The Programmer
	The Compiler –vs– The Programmer
	The Compiler –vs– The Programmer
	The Compiler –vs– The Programmer
	The Compiler –vs– The Programmer
	The Compiler –vs– The Programmer
	The Compiler –vs– The Programmer
	The Compiler –vs– The Programmer
	Programmer Optimizations
	Programmer Optimizations
	Amdahl’s Law
	Slide Number 33

