7
Computer Systems and Networks

ECPE 170 — University of the Pacific

C Programming

Lab Schedule

Activities Assignments Due

Today Today

7 Intro to C Programming ? Lab Report for Lab 1 due

7 Intro to Build Tools and by 11:59pm

Makefiles Submit via Sakai

Thurs Thurs

? Lab 3 -CProgramming #A Lab Report for Lab 2 due
by 11:59pm

Submit via Mercurial

The First Person of the Day:

Dennis Ritchie

Creator of C programming
language

Co-creator of Unix

(with Ken Thompson, Brian
Kernighan, and others at
AT&T Bell Labs)

Winner of ACM Turing
Award

9/9/1941—10/12/2011

THE

PROGRAMMING
LANGUAGE.

\ BRIAN W KERNIGHAN /
DENNIS M. RITCHIE

FRENTICE HALL SOFTWARE SERIES

“Pretty much everything on the web uses
those two things: C and UNIX. The
browsers are written in C. The UNIX
kernel — that pretty much the entire
Internet runs on — is written in C. Web
servers are written in C, and if they’re not,
they’re written in Java or C++, which are
C derivatives, or Python or Ruby, which
are implemented in C. And all of the
network hardware running these
programs | can almost guarantee were
written in C. It’s really hard to overstate
how much of the modern information
economy is built on the work Dennis did.”

? Rob Pike, Bell Labs / Google

R itchig and Ken Thompson use a teletypewriter to run a program on a UNIX-based
computer system they co-founded at Bell Labs in New Jersey. Their development work
an 40 years ago facilitated the realization of the Internet.

- ks b —— A
a - ST M .

] 2 b

_ 7
C Programming

C++ Features Not in C

No classes / object-oriented programming
No new / delete

No stream operators (<< and >>), cin, cout, ...
No C++ Standard Libraries (e.g. iostream)

bool keyword
2 Added in C99 standard

Declare variables anywhere inside function
72 Added in C99 standard

Output with printf()

printf("'This 1s a string\n);
printf(""'The i1nteger i1s %i\n', num);

printf("'The floating-point values
are %g and %g\n'", numl, num2);

Output with printf()

Format “Type” Code Corresponding Variable Type
dor i int (interpret as signed 2’s comp)
u int (interpret as unsigned)
X int (print as hexadecimal)
forg float/double
C char
S string (null-terminated array of chars)

Prefix with | or 11 (i.e. “long” or “long long” for larger 64-bit data types)

Lots of formatting options not listed here...
2 # of digits before / after decimal point?
72 Pad with zeros?

Input with scanf()

Input from console
scant("%d %c'", &myint, &mychar)

Requires the address of the destination variable
? Use the & operator to obtain address

Caveat: Array names are already the “address of”!

2 char myarray|[8];
scanft(’%s", myarray)

1 No & needed here!

Documentation

Man(ual) pages exist for common programming
functions too

unix> man printf

unix> man scanf

Structures

struct database
{
int 1d_number;
int age;
float salary;

};

int main()

{
struct database employee;
employee.age = 22;
employee.1d _number = 1;
employee.salary = 12000.21;

}

13

7

C-Strings (Arrays of Characters)

C Strings

There is no such thing as a “string” in C!

What do you get? An array of characters
A Terminated by the null character *\0O"

Must manipulate element by element...

2 Not enough room in the array? Need a bigger array

Arrays of Characters

char phrase[]=""Math'';

phrase

\

\

phrase[0] phrase[l] phrase[2] phrase[3] phrase[4]

M | A T H | \O

Null terminator character |

(End of string)

Arrays of Characters

char phrase[8]=""Math";

phrase[0] phrase[l] phrase[2] phrase[3] phrase[4] phrase[5] phrase[6] phrase[7]

M| A | T H | \O | 2?7 | ??? | ?PP?

printf('%s\n", phrase); Prints until it reaches
the \O character!

Helpful Library for Character Arrays

#include <string.h>

Useful functions

2 strcpy - String copy

A strcmp - String compare

A strlen - String length

2 strcat - String concatenate

String Copy

char phrasel[] = "'Math";
char phrase2[8];
strcpy(phrase2, phrasel);

phrasel phrasel[0] phrasel[1l] phrasel[2] phrasel[3] phrasel[4]

—— M | A | T | H | \O

§ 38 3 3 3

phrase?2 phrase2[0] phrase2[1] phrase2[2] phrase2[3] phrase2[4] phrase2[5] phrase2[6] phrase2[7]

—— M | A | T | H | \O|P?e?| 27| 2?7

String Concatenation

phrasel

phrasel[0]

char phrasel[8] = “Comp’’;
char phrase2[] = “Sci’’;

strcat(phrasel, phrase2?);

phrasel[1] phrasel[2] phrasel[3] phrasel[4] phrasel[5] phrasel[6] phrasel[7]

phrase2

C

VI P S C I | \O

=y _—~7

O

phrase2[0]

phrase

phrase2 phrase2

——

S

You cannot do this:
phrasel=
phrasel+phrase?2;

¢ |17\

ctype Library

Useful for character manipulation
#include <ctype.h>

toupper(char) / tolower(char) — Converts
character to uppercase or lowercase

72 Example:

char c = toupper("a”);
printf("'%c', c);, // A

ctype Library

1salpha(char) — Is the character a letter?
isdigit(char) — Is the character a number 0-9?

1sspace(char) — Is the character whitespace?
(space or newline character)

1spunct(char) — Is the character punctuation?
(technically, a visible character that is not whitespace, a
letter, or a number)

... and several other variations

22

-
Memory Management

Memory Allocation with malloc()

#i1nclude <stdlib.h>

void * malloc(int size)
? Allocate region in memory (aka “new”

72 Argument: Size of region in bytes to allocate
? Return value: Pointer to the region

void free(vord * ptr)
? De-allocate region in memory (aka “delete”)
72 Argument: Pointer to the region

Memory Allocation with malloc()

void * calloc(int count, Int size)
Basically the same as malloc!
Imagine you want an array of elements...
72 Argument 1: # of elements to allocate
72 Argument 2: Size of each element in bytes
?2 Return value: Pointer to the region

Memory Allocation with malloc()

void * realloc(void *ptr, Int size);
7 Resize a dynamic region of memory

Note that it might move to a new address!

A

Argument: Pointer to the original region

A

Argument 2: Desired size in bytes of new region

A

Return value: Pointer to the new region
It might be at the same address if you made it smaller

It might be at a new address if you made it larger

Memory Management

Who implemented mal loc()?

C Standard Library: #i1nclude <stdlib.h>

There are different C Standard Library
implementations!

7

A 3N

Android: Bionic
Apple: BSD-based / Proprietary
Microsoft: Proprietary C Runtime Library

Linux: GNU C Library (glibc)
http://www.gnu.org/software/libc/

Memory Management

Where does the mal loc() memory come from?

The Heap:

72 Aregion of memory for dynamic memory allocation
Per-process — each program gets its own heap
Managed by malloc() and related functions

Different from the stack, which is for static variables
(known at compile-time)

N N N

Memory Management

mal loc() outline:
Callmal loc() and request memory

mal loc () checks existing heap size

Sufficient? Update bookkeeping to mark space as
“used” and return address to your program

7 Insufficient?

Call operating system via brk()/nmap() to grow
the heap (plus a little extra for future requests)

Update bookkeeping and return address to your
program

Memory Management

Why do we need to call free () after calling
malloc()?
2 Memory leak

72 malloc() cannot re-use that space ever, because
its internal bookkeeping still thinks that region is
used

72 Will only be recovered upon terminating program

Operating system wipes out all the memory allocated
to your process (stack, heap, etc...)

Memory Management

OS creates virtual
memory space for
process when started

Region is huge (full 32
or 64 bit space)

7 Not fully mapped to
physical memory

2 Otherwise you
could only fit 1
program in memory

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

Virtual Memory Space
for new process

0x0000000000000000

Memory Management

OS loads in the
program from
disk

“Text” region

? Program code

“Data” region

2 Program fixed
data

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

0x0000000000000000

Memory Management

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

Stack created to
track program

function calls N N
and local
variables

Stack

Text (Program code)

0x0000000000000000

Memory Management

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

Heap created to

. Stack
store dynamic
memory from N4 v
mal loc()and
() . (Unused / unmapped virtual memory)
related functions Wt

PN PN
Not to scale —
this unused Heap

region is huge!

Text (Program code)

0x0000000000000000

Memory Management

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

Progl.'am starts Stack
running
mal loc()allocates
some memory (Unused / unmapped virtual memory)
O\ O\
—

Heap .
B

Text (Program code)

0x0000000000000000

Memory Management

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

Original heap Stack
space eventually

fills up N N

(Unused / unmapped virtual memory)
malloc()

requests New
additional space space
from the kernel

by using brk()

system call

Text (Program code)

0x0000000000000000

Memory Management

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

free() Stack
deallocates
blocks from the N N
heap (Unused / unmapped virtual memory)
AN AN
Heap —

Text (Program code)

0x0000000000000000

Memory Management

Program
terminates

OS expunges
entire virtual
address space
? Everythingis
deleted

OXFFFFFFFFFFFFFFFF (32 or 64 bit)

Stack

(Unused nmapped virtugfmemory)

ogram data)

0Ox0000000000000000

Buffer Overflow Vulnerability

What is a buffer overflow bug?

2 char bufl[8]="“";
char buf2[8]=*“";
strcat(bufl, “excessive”);

End up overwriting two characters beyond buf1!

Buffer Overflow Vulnerability

Why is a buffer overflow bug dangerous?

What is beyond my buffer in memory?
?A Other variables and data? (probably buf?2)
?A The stack? (further out)

? The return address to jump to after my function
finishes?

If app is running as administrator, attacker now has
full access!

Memory Management

Limitless opportunities in C for errors regarding memory

Forgetting to Tree() some dynamic memory
Trying to Free () dynamic memory more than once
Losing a pointer to dynamic memory (memory is “lost”)

Accessing array elements past the end of the array

AN N NN

Mis-calculating array pointers that miss their desired
target

Will learn a tool (Valgrind) in Lab 5 to analyze your
program and detect / trace errors

What's the Error?

char *a = malloc(128*si1zeof(char));
char *b = malloc(128*si1zeof(char));
b = a;

free(a);

free(b);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What's the (Potential) Error?

char *a = malloc(128*si1zeof(char));

datalLen <some value...>

// Copy ‘“datalLen” bytes

// starting at *data to *a
memcpy(a, data, datalen);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What's the Error?

ptr = (char *) malloc(strlen(string A));
strcpy(ptr, string A);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What's the Error?

int *get_11()

{
int 11 = 2; // Local stack variable

return ⅈ
ks
main()
{

int *i11;

11 = ge t 110);

... Do stuff using 11 pointer
}

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

45

OKAY, HUMAN.

HUH? 3
BEFORE You
AT (OMPILE,
LISTEN VR

YOU KNOW WHEN YOURE
FALLING ASLEEP AND
YOU IMAGINE YCURSELF
WaLKING OR
A SOMETHING,

http://xkcd.com/371/

Computer Systems and Networks

AND SUDDENLY YOU
NISSTER, STUMBLE,
AND TJOLT AWAKE?

vEﬁm ;ﬁ

WELL, THAT'S WHaT A
SEGFAULT FEELS LIKE.

9
DOUBLE - CHECK. YOUR
DAMN POINTERS, OKAY?

| 3!

Fall 2013

Memory Management

What’s a NULL pointer?
2 Pointer value is 0x000000000

72 Meaning is that the pointer is not pointing anywhere

What happens if you dereference a NULL pointer?

? Telling the computer to read from (or write) to the
value stored in the pointer, which is 0x000000000

?” Behavior undefined and generally unpleasant on
various computer systems

Memory Management

“Segfault” = Segmentation Fault

Your program tried to read or write a virtual memory
address that is not allowed

? Tried to read memory outside of program bounds?

?2 Tried to write read-only memory regions? (used for
program data)

“Segmentation” was the name of an old system (back
before Intel 386 processors) used to divide physical
computer memory into many virtual address regions,
one per application process

A The Segfault name stuck even though we now use paging
to manage virtual memory

7
Computer Systems and Networks

Build Tools
+ Makefiles

The Other Person of the Day:

Richard Stallman

Founder of
72 GNU project — “GNU’s not Unix”
7 Free Software Foundation

Author
7?2 GNU C Compiler (GCC)
v | Emacs text editor

GNU Manifesto
1. Freedom to run a program for any purpose

2. Freedom to study the mechanics of the
program and modify it

3. Freedom to redistribute copies

Freedom to improve and change modified
versions for public use

The Other Person of the Day:

Richard Stallman

“Steve Jobs, the pioneer of the computer as a
jail made cool, designed to sever fools from
their freedom, has died.

As Chicago Mayor Harold Washington said of
the corrupt former Mayor Daley, "I'm not glad
he's dead, but I'm glad he's gone." Nobody
deserves to have to die — not Jobs, not Mr.
Bill, not even people guilty of bigger evils than
theirs. But we all deserve the end of Jobs'
malign influence on people's computing.

Unfortunately, that influence continues
despite his absence. We can only hope his
successors, as they attempt to carry on his
legacy, will be less effective.”

72 Richard Stallman, 10/6/2011

51

. ”
Toolchain

#include <stdio.h>

int main(void)

1
printf('hello, world\n");

return O;

4

unix> _/program

hello, world

Behind the Scenes

Motivating Question

7 What really happens between typing in the “Hello
Word” program, and seeing the output on the
console?

Pre-Processor

Think of this as a “find and replace” wizard for your source code

Include header files
7 Literally insert .h file lines into .c file

Macro expansion

72 Macro = fragment of C code
#define IS POSITIVE(C x) (x> 0)
? Preprocessor replaces macro with original definition in source code

Conditional compilation

72 Include or exclude parts of the program
2 #iftdef CONTROL

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

‘MY CODE'S COMPILING.”

HEY! GETBACK
TOWoRK! -/
mmmu@

OH. CARRY ON. A,

55

Compiler

Basic goal
7 Input: High-level language source code
? Output: Machine code for processor family

6 steps to accomplish transformation

Steps 1-3 — source code analysis:

1. Lexical analysis extracts tokens, e.g., reserved words and
variables

Syntax analysis (parsing) checks statement construction

3. Semantic analysis checks data types and the validity of
operators

Compiler Operation

Steps 4-6 — Synthesis phases:

4. Intermediate code generation creates three address code
(“fake assembly code”) to facilitate optimization and
translation

5. Optimization creates (real) assembly code while taking
into account architectural features that can make the
code efficient

6. Code generation creates binary code from the optimized
assembly code

We write these steps as separate modules

? Benefit: Compilers can be written for various CPU
architectures by rewriting only the last two modules

Compiler Operation

Token Stream

A:B+6

Parse
Tree

B” (float) 6

Intermediate |
Code
Generator

Code
Optimizer

A=B+6.0
Intermediate Code

LOAD 0A2
ADD 0QAe

Code |
Generator ||
STORE 0AO

Optimized Code

Why So Many Compilation Steps?

We don’t just care about 1 language or 1 processor family!
C x86
C++ x86-64
Objective-C ARM
=) =)
Fortran PowerPC
Ada 68000
Others... MIPS

(and many more!)

Linker

Real programs are typically written with multiple
source files and many subroutines

? Each file is compiled separately

?” But we need some way to join everything together
into a single executable file

This is the job of the linker (aka “link editor”)
7 Input —many files with binary machine code

? Output —single file with all of the necessary binary
machine code

Linker + Loader

CALL ProcA
MyProg.obj MyProg.exe
(Main Program)
CALL ProcC CALL ProcA
CALL ProcB CALL ProcC
N . Main
CALL ProcB Memaory
ProcC.obj AT > . —>t Loader >
...u.u-" ..ﬂ d
Proce ProcA
ProcB |~ ProcB
. B ProcC
ProcB.obj | ProcA
I

- ProcA.obj

Result: Program binary (saved on disk)

11011101010000001010000001101110101000
00010100000011011101010000001010000001
10111010100000010100000011011101010000
00101000000110111010100000010100000011
01110101000000101000000110111010100000

01010000001101110101000000101000000110
11101010000001010000001101110101000000
10100000011011101010000001010000001101
11010100000010100000011011101010000001

62

Shell /| GUI

User instructs computer to run program
2 Shell command?
2 Mouse / keyboard action in GUI?

Operating System

Security: OK to run file?

Memory management: Find space and create new
virtual memory region for this program

Filesystem: Retrieve program binary code from disk
Loader: Place program binary code into memory
Scheduler: Find CPU time for program to run

Context switch — Program starts running

65

7
Makefiles — Lab 3

Makefile

Goal: Build our program with one command:

unix> make

Challenge
? Every program is different!

? Different source files, different compilers / settings,
different external libraries, etc...

A Makefile is a text file that specifies how to build your
program

A The make utility reads the Makefile
2 You’'ll learn how this file works in Lab 3

