

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Computer Networks

Schedule

- **Exam 3** Friday, April 20th
 - 7 Caches
 - Virtual Memory
 - Input / Output
 - Operating Systems
 - Compilers & Assemblers
 - Processor Architecture
 - Review the lecture notes before the exam (not just the homework!)
 - No calculators for this exam
- Final Exam Friday, April 27th Comprehensive
 - **₹** 8am − Regular classroom
 - **Exam is optional if you are happy with your 3 earlier exam scores!**

Review – HW #18

- Review problems
 - Register windows
 - **₹** RISC vs CISC
 - GPGPUs

Quiz 6

Quiz 6 - SSDs

- **♂** SSD pros / cons?
- Flash translation layer
 - How does this improve reliability?

Quiz 6 – RTOS

- Real-time operating systems (RTOS) can provide **predictable timing** for high-priority tasks (while still running a mix of low-priority tasks)
- The difference with a general-purpose OS is an RTOS provides a **guarantee** of predictable timing
 - General-purpose OS usually meets its timing goals, but how often have you experienced a hiccup (momentary stutter) while playing a video or listening to music?

Quiz 6 – Interrupts

- What devices send interrupts?
 - Network card
 - Data received or data has been successfully sent
 - USB controller
 - Mouse moved, key/button pressed, etc..
 - Real-time clock, high precision event timer, etc...
 - The processor itself!
 - Divide by zero, page fault, invalid opcode, etc...
 - These are usually called exceptions, but they work the same way as external interrupts
- Some of these interrupts represent errors, but others are perfectly normal and commonplace...

Quiz 6 – Interrupts

- What happens when the processor sees an interrupt?
 - Stop! Save the current running process
 - Lookup the interrupt number in an interrupt descriptor table (which is stored in memory from 0x0000 to 0x03FF)
 - Table contains pointer to a subroutine that processes the interrupt (aka the interrupt service routine)
 - Run the interrupt service routine

Quiz 6 – Interrupt Service Routine

- Interrupt service routine The specific subroutine that is executed whenever that interrupt number occurs
 - Tend to be small and fast (so we can get back to running the previous program quickly)
 - Examples
 - Copy packet from network card to main memory?
 - Notify OS that the mouse moved to the left 2 units?
 - Notify OS key "z" was pressed on the keyboard?
 - Notify OS of page fault for memory address 0x03813?

Computer Networks

Disclaimer

- We spend an entire semester in COMP 177 (Computer Networking) exploring these topics!
- One day is only sufficient for the briefest of overviews...
- **7** Focus:
 - Compare / contrast TCP versus IP
 - Compare / contrast Ethernet switches versus IP routers
 - Might be good exam questions...

Network Model

Application Layer

(Myriad examples: Web browser, web server, etc...)

Transport Layer

(Reliability – e.g. TCP)

Network Layer

(Global Network – e.g. IP)

Link Layer

(Local Area Network – e.g. Ethernet)

Physical Layer

("Bit on a Wire")

Ethernet Basics

The <u>Link</u> Layer

Link Layer

Local Area Network

- Goal: Connect computers across a Local Area Network
 - **₹** Room?
 - **₹** Floor?
 - Building?
 - Few buildings?
- Natural size limit to Ethernet-only networks

Ethernet - Addressing

- Each device on the network needs a unique address
- All Ethernet devices have globally unique 48-bit address assigned by manufacturer
 - The MAC address
- **7 Example:** 0x 00−07−E9−CB−79−4F
 - $0 \times 00 07 E9 = Intel Corp (assigned by IEEE)$
 - Upper 24 bits
 - 0x CB-79-4F = Unique address per NIC (picked by Intel)
 - Lower 24 bits

Ethernet Frame Format (Simplified)

Bytes:

- Two MAC addresses saved in Ethernet frame
 - **→ Destination MAC** Where is this frame going to?
 - **Notice NAC** − Who sent this frame?
- Other fields
 - **Type**: Indicates data type or length in bytes
 - 7 The Data!

Topology

- So how do I connect dozens of computers together?
 - My cable only has two ends...

Ethernet Switch

- **◄ Learns location** of computers on Ethernet network
 - Examine header of each arriving frame
 - What is its source MAC address? (i.e. who sent it?)
 - Note the port it came in on!
 - Save this data in forwarding table
- Forwards data out correct port
 - Search forwarding table for destination MAC address

Ethernet Switch

(assume learning already occurred)

A transmits to D

D replies to A

E transmits to B, and A to C

Internet Protocol (IP) Basics

The <u>Network</u> Layer

Network Layer

The Internet Protocol - Motivations

- **₹** Ethernet is sufficient for a local-area network only
 - Locates computers via broadcast only...
 - Network topology can't have loops...
- A new protocol (IP) is needed for a global network (the Internet!)

IP Properties

Datagram

- Each packet is individually routed
- Packets may be fragmented or duplicated by underlying networks

Connectionless

No guarantee of delivery in sequence

Unreliable

- No guarantee of delivery
- No guarantee of integrity of data

Best effort

- Only drop packets when necessary
- No time guarantee for delivery

Ethernet networks provide the same "guarantees"

IP Addresses

- Every network interface has at least one IP address
 - → A computer might have 2 or more IP addresses.
 - A router has many IP addresses
- IPv4 addresses are usually displayed in dotted decimal notation
 - Each byte represented by decimal value
 - Bytes are separated by a period
 - 7 IP address $0 \times 8002C2F2 = 128.2.194.242$

IP Packet Format (Simplified)

- Two IP addresses saved in packet
 - **Destination** IP address
 - Where is this packet going to?
 - **Source** IP address
 - Who sent this packet?
- Other fields are also included...
 - 7 Checksum
 - Length
 - 7 The Data!

IP and Ethernet (Simplified View)

- So what is sent on the wire is an Ethernet frame
 - Inside of which is an IP packet...
 - Inside of which is the transport layer...
 - Inside of which is the application layer...

Inside versus Outside LAN

- Your computer is able to directly contact destination computers located **inside** the local area network (LAN)
- For destinations outside your LAN, forward message to **next-hop gateway router**

Routers

- "Similar" to switches, but only at a high level
 - Packet comes in
 - Switch/router looks up the destination address
 - Packet forwarded out correct port

Routers

- Key difference #1: Routers forward based on IP addresses!
 - Router works at network (IP) layer
 - Router forwards based on destination IP address
 - Switch works at link (Ethernet) layer
 - Switch forwards based on destination MAC (Ethernet) address

Routing Between LANs

(1) A transmits to L using higher-level protocol (e.g. IP)
Ethernet frame destination is router

Frame:

DA (E)	SA (A)	Type / Data	CRC
--------	--------	-------------	-----

(2) Switch forwards frame to router

(3) Router uses higher-level protocol to determine destination, and updates Ethernet frame destination, source and CRC

Frame:

DA (L) SA (G) Type / Data CR	С
------------------------------	---

(4) Switch forwards frame to destination

TCP Basics

The <u>Transport</u> Layer

Transport Layer

"Magic" of the Internet

- IP: Un-reliable, order not guaranteed, delivery of individual messages
- **TCP**: Reliable, in-order delivery of data **stream**
- Magic
 - **TCP** is built on top of IP!
- Great clown analogy by Joel Spolsky http://www.joelonsoftware.com/articles/
 LeakyAbstractions.html

Clown Delivery

Need to move clowns from Broadway to Hollywood for a new job

Clown Delivery – Problems?

Many cars, many clowns
Bad things are guaranteed to
happen to at least *some* of them

Car crash / lost

Shaved head / too ugly to work!

WRONG WAY

Clown Delivery – Problems?

People in Hollywood get frustrated – It's hard to make movies with clowns in this condition!

Clown Delivery - Solution

- New company
 - Hollywood Express
- Guarantees that all clowns
 - **7** (1) Arrive
 - 7 (2) In Order
 - (3) In Perfect Condition
- Mishap? Call and request clown's twin brother be sent immediately

UFO crash in Nevada blocks highway?

- Clowns re-routed via Arizona
 - Director never even hears about the UFO crash
 - Clowns arrive a little more slowly

Networking Abstraction

- TCP provides a similar reliable delivery service for IP
- Abstraction has its limits
 - Ethernet cable chewed through by cat?
 - No useful error message for that problem!
 - The abstraction is
 "leaky" it couldn't save
 the user from learning
 about the chewed cable

The Application Layer

Application Layer

Application-Layer Protocol

- Both the client and server speaking the protocol must agree on
 - Types of messages exchanged
 - e.g., request, response
 - Message syntax
 - What fields are in messages
 - How fields are delineated
 - Message semantics
 - Meaning of information in fields
 - Rules for when and how processes send and respond to messages

HTTP

- Hypertext Transport Protocol (HTTP)
- ▼ Telnet example impersonate a web browser!

Request:

unix\$ telnet www.google.com 80

GET /about/ HTTP/1.1 Host: www.google.com

Response:

HTTP/1.1 200 OK

Vary: Accept-Encoding
Content-Type: text/html

Last-Modified: Tue, 10 Apr 2012 09:33:47 GMT

Date: Tue, 10 Apr 2012 17:50:51 GMT Expires: Tue, 10 Apr 2012 17:50:51 GMT

Cache-Control: private, max-age=0
X-Content-Type-Options: nosniff

Server: sffe

X-XSS-Protection: 1; mode=block

Transfer-Encoding: chunked

<file>

Recap

- **TCP versus IP**
 - What features does IP provide?
 - What features does TCP provide?
- Ethernet versus IP
 - Where are source/destination MAC addresses used?
 - Where are source/destination IP addresses used?
- Ethernet switch versus IP router
 - What address does an Ethernet switch use to make a forwarding decision?
 - What address does an IP router use to make a forwarding decision?