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Architectures




Schedule

Friday, April 13t — Pacific Day — No class

Exam 3 — Friday, April 20t
Caches

Virtual Memory

Input / Output
Operating Systems
Compilers & Assemblers
Processor Architecture

Review the lecture notes before the exam
(not just the homework!)

No calculators for this exam
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Flynn's Taxonomy

Many attempts have been made to come up with a
way to categorize computer architectures

Flynn’s Taxonomy has been the most enduring of
these

? Butitis not perfect!

Considerations

? Number of processors?
72 Number of data paths? (or data streams)



Flynn's Taxonomy

SISD: Single instruction stream, single data stream
? Classic uniprocessor system (e.g. MARIE)

SIMD: Single instruction stream, multiple data streams
72 Execute the same instruction on multiple data values
A Example: Vector processor

MIMD: Multiple instruction streams, multiple data
streams

72 Today’s parallel architectures

MISD: Multiple instruction streams, single data stream
72 Uncommon — used for fault tolerance



Instruction-Level Parallelism

Example program: (imagine it was in assembly)

* + +
D Q. O

e

WO
Q th O

o Q W

Assume we have a processor with “lots” of ALUs
7 What instructions can be executed in parallel?
72 What instructions cannot be executed in parallel?



Instruction-Level Parallelism

Example program 2: (imagine it was in assembly)

= a + b;
= c + d;
if(e > f)
a = 15
else
a = 18;
g = h + 30;
Assume we have a processor with “lots” of ALUs
7 What instructions can be executed in parallel?
7 What instructions cannot be executed in parallel?
If we tried really hard, could we run them in parallel?
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Instruction-Level Parallelism

This is instruction-level parallelism

7 Finding instructions in the same program that be
executed in parallel

7 Different from multi-core parallelism, which

executes instructions from different programs in
parallel

You can do this in a single “core” of a CPU
?” Adding more ALUs to the chip is easy

7 Finding the parallelism to exploit is harder...
? Getting the data to the ALUs is harder...



Instruction-Level Parallelism

Instruction-level parallelism is good

? Let’s find as much of it as possible and use it to
decrease execution time!

Two competing methods:

? Superscalar: the hardware finds the parallelism

72 VLIW: the compiler finds the parallelism

Both designs have multiple execution units
(e.g. ALUs) in a single processor core



MIMD — Superscalar

Superscalar designs — the hardware finds the
instruction-level parallelism while the program is
running

Challenges

?A CPU instruction fetch unit must simultaneously
retrieve several instructions from memory

2 CPU instruction decoding unit determines which of
these instructions can be executed in parallel and
combines them accordingly

Complicated!



MIMD —-VLIW

Very long instruction word (VLIW) designs — the compiler
finds the instruction-level parallelism before the program
executes

2 The compiler packs multiple instructions into one long
instructions that the hardware executes in parallel

Arguments:

? For: Simplifies hardware, plus the compiler can better
identify instruction dependencies (it has more time to work)

? Against: Compilers cannot have a view of the run time code,
and must plan for all possible branches and code paths

Examples: Intel Itanium, ATI R600-R900 GPUs



Instruction-Level Parallelism

Back to the example More techniques for ILP

program:
Speculative execution

(or branch prediction)

Q) e = a + b;

@ f =c + d; 7 Guess that e>f, and

@ if(e > f) execute line 4

@ a = 15; immediately...

® else

® a = 18; Out-of-order execution
@ g =h + 30; 72 Execute line 7 before 4-6,

since it doesn’t depend on
them



Shared Memory Multiprocessors

Imagine a multi-core CPU. How do different cores
(running different programs) communicate with

each other?
2 One common approach —use main memory!
? Referred to as symmetric multiprocessing (SMP)

The processors do not necessarily have to share the
same block of physical memory

# Each processor can have its own memory, but it
must share it with the other processors



Shared Memory Multiprocessors

Shared memory MIMD machines can be divided
into two categories based upon how they access
memory

72 Uniform memory access (UMA)
7 Non-uniform memory access (NUMA)



Shared Memory Multiprocessors

MIMD uniform memory access (UMA)
72 All memory accesses take the same amount of time

Hard to scale to large numbers of processors!

2 Bus becomes a bottleneck

Processor Processor Processor Processor

! !



Shared Memory Multiprocessors

MIMD nonuniform memory access (NUMA)

? A processor can access its own memory much more
quickly than it can access memory that is elsewhere

? Each processor has its own memory and cache

More scalable / cache coherence challenges!

Processor Processor Processor Processor

Bus



Cache Coherence

What if main memory is changed by processor A,
but the cached copy of the data in processor B is
not changed?

# Cache coherence problems!
(We say that the cached value is stale)

Solution? Add even more hardware!

?” Cache coherent NUMA systems
(e.g. AMD Opteron, Intel Core)

# Each core monitors the cache writes by the other
cores, and updates their own caches
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What about GPUs?

GPU - Graphics Processing Unit

GPUs are a specialized processor
? Target application: 2D and 3D graphics rendering

GPUs are optimized for highly parallel operation
over a finite data set

2 CPU sends data to GPU over PCle bus

? CPU tells GPU: render scene and display!
? GPU operates autonomously



GPU versus CPU Design

7 Both Intel and Nvidia have a similar “transistor
budget”

72 How do they “spend” those transistors?
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GPU versus CPU Design

Flexibility?
2 CPUis the winner

? Designed for broad range of applications and has a large ISA
(instruction set architecture)

Single-thread performance?
? CPU is the winner

72  CPU cores have transistor-expensive features like out-of-order
execution, large caches, branch prediction, etc... that improve
single-thread performance

Massively-parallel application performance?
2 GPUis the winner

A  Hundreds of cores, but each is very simple (no/small cache, in-order
execution, limited instruction set, limited floating-point support)



GPGPU

Can we use GPUs for more than just gaming?

Yes!

? General Purpose Computing on GPUs (GPGPU)
72 Send the data to the GPU along with a program
2 Process it
.

Retrieve the finished data from GPU (instead of
displaying it on screen)

Only true if your application shares some high-level
attributes with game rendering



GPGPU Strengths [ Weaknesses

Fast if your program involves:
7 Llarge data sets
72 Many parallel integer or floating-point operations

7 Minimal dependency between data elements (i.e. SIMD)

Slower if your program involves:

?2 Double precision floating-point

? Logical operations on integer data
Lots of branches!

A Random access / memory-intensive operations beyond
the size of GPU memory



GPGPU Programming

Challenge:
? GPU architecture changes all the time!
# of independent threads, ALUs, memory size, etc...

2 How can we write one program that runs on many
different GPU models?

One solution from NVIDIA: CUDA
2 Compute Unified Device Architecture

7 Extension to the C programming language



CUDA Programming

. . Main
CUDA provides a mechanism | mMemory | (7 CPU
to Copy processing data
7?7 Transfer data to from main - Instruct the processing]
2
memory to GPU M Copy the result
ey emory

2 Initiate hundreds/ for GPU )

thousands of threads on GPU Exeoute paralll )

the GPU for data-parallel (GeForce 8800) I A~

3
parts of the algorithm O

GPU needs many threads
(thousands) in order to
run efficiently!

A Transfer results from GPU Processing flow
back to main memory on CUDA
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