

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Processor Architectures

Schedule

- Friday, April 13th Pacific Day No class
- Exam 3 Friday, April 20th
 - Caches
 - Virtual Memory
 - Input / Output
 - Operating Systems
 - Compilers & Assemblers
 - Processor Architecture
 - Review the lecture notes before the exam (not just the homework!)
 - No calculators for this exam

Flynn's Taxonomy

Flynn's Taxonomy

- Many attempts have been made to come up with a way to categorize computer architectures
- **Flynn's Taxonomy** has been the most enduring of these
 - But it is not perfect!
- Considerations
 - Number of processors?
 - Number of data paths? (or data streams)

Flynn's Taxonomy

- **ு SISD**: Single instruction stream, single data stream
 - Classic uniprocessor system (e.g. MARIE)
- **SIMD**: Single instruction stream, multiple data streams
 - Execute the same instruction on multiple data values
 - Example: Vector processor
- MIMD: Multiple instruction streams, multiple data streams
 - Today's parallel architectures
- MISD: Multiple instruction streams, single data stream
 - Uncommon used for fault tolerance

Example program: (imagine it was in assembly)

$$(1)$$
 e = a + b;

$$\mathfrak{3}$$
 g = e * h;

- Assume we have a processor with "lots" of ALUs
 - **What instructions** <u>can</u> be executed in parallel?
 - What instructions <u>cannot</u> be executed in parallel?

Example program 2: (imagine it was in assembly)

- Assume we have a processor with "lots" of ALUs
 - What instructions <u>can</u> be executed in parallel?
 - **What instructions cannot be executed in parallel?**
 - **◄** If we tried really hard, could we run them in parallel?

- This is instruction-level parallelism
 - Finding instructions in the same program that be executed in parallel
 - **Different** from multi-core parallelism, which executes instructions from different programs in parallel
- You can do this in a single "core" of a CPU
 - Adding more ALUs to the chip is easy
 - Finding the parallelism to exploit is harder...
 - Getting the data to the ALUs is harder...

- Instruction-level parallelism is good
 - Let's find as much of it as possible and use it to decrease execution time!
- Two competing methods:
 - Superscalar: the hardware finds the parallelism
 - **VLIW**: the *compiler* finds the parallelism
- Both designs have multiple execution units (e.g. ALUs) in a single processor core

MIMD – Superscalar

- Superscalar designs the hardware finds the instruction-level parallelism while the program is running
- Challenges
 - CPU instruction fetch unit must simultaneously retrieve several instructions from memory
 - CPU instruction decoding unit determines which of these instructions can be executed in parallel and combines them accordingly
 - Complicated!

MIMD – VLIW

- ✓ Very long instruction word (VLIW) designs the compiler finds the instruction-level parallelism before the program executes
 - The compiler packs <u>multiple</u> instructions into one long instructions that the hardware executes in parallel
- Arguments:
 - **For**: Simplifies hardware, plus the compiler can better identify instruction dependencies (it has more time to work)
 - Against: Compilers cannot have a view of the run time code, and must plan for all possible branches and code paths
- Examples: Intel Itanium, ATI R600-R900 GPUs

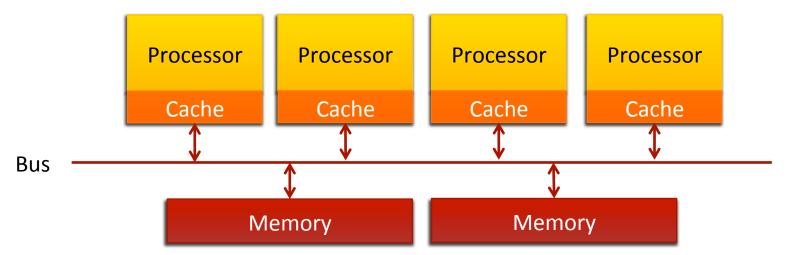
- Back to the example program:
 - (1) e = a + b;
 - (2) f = c + d;
 - 3 if (e > f)
 - 4 a = 15;
 - (5) else
 - 6 a = 18;

- More techniques for ILP
- Speculative execution (or branch prediction)
 - Guess that e>f, and execute line 4 immediately...
- Out-of-order execution
 - Execute line 7 before 4-6, since it doesn't depend on them

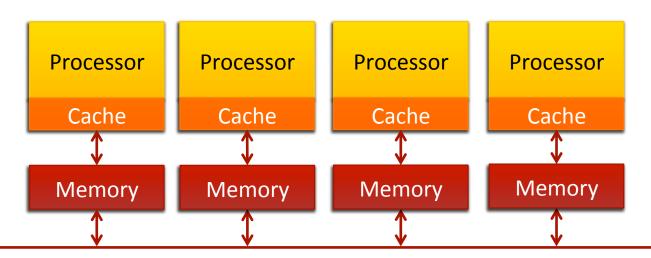
- Imagine a multi-core CPU. How do different cores (running different programs) communicate with each other?
 - One common approach use main memory!
 - Referred to as symmetric multiprocessing (SMP)
- The processors do not necessarily have to share the same block of physical memory
 - Each processor can have its own memory, but it must share it with the other processors

- Shared memory MIMD machines can be divided into two categories based upon how they access memory
 - Uniform memory access (UMA)
 - Non-uniform memory access (NUMA)

- MIMD uniform memory access (UMA)
 - All memory accesses take the <u>same amount of time</u>
- Hard to scale to large numbers of processors!
 - Bus becomes a bottleneck



- MIMD nonuniform memory access (NUMA)
 - A processor can access its own memory much more quickly than it can access memory that is elsewhere
 - Each processor has its own memory and cache
- More scalable / cache coherence challenges!



Cache Coherence

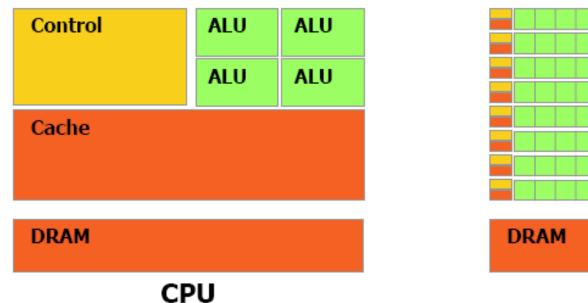
- What if main memory is changed by processor A, but the cached copy of the data in processor B is not changed?
 - Cache coherence problems!(We say that the cached value is stale)
- Solution? Add even more hardware!
 - Cache coherent NUMA systems (e.g. AMD Opteron, Intel Core)
 - Each core monitors the cache writes by the other cores, and updates their own caches

What about GPUs?

- **☞** GPU Graphics Processing Unit
- GPUs are a specialized processor
 - Target application: 2D and 3D graphics rendering
- GPUs are optimized for highly parallel operation over a finite data set
 - CPU sends data to GPU over PCIe bus
 - CPU tells GPU: render scene and display!
 - GPU operates autonomously

GPU versus CPU Design

- Both Intel and Nvidia have a similar "transistor budget"
 - How do they "spend" those transistors?



DRAM

Computer Systems and Networks

GPU versus CPU Design

₹ Flexibility?

- CPU is the winner
- Designed for broad range of applications and has a large ISA (instruction set architecture)

尽 Single-thread performance?

- **7** CPU is the winner
- CPU cores have transistor-expensive features like out-of-order execution, large caches, branch prediction, etc... that improve single-thread performance

Massively-parallel application performance?

- **GPU** is the winner
- Hundreds of cores, but each is very simple (no/small cache, in-order execution, limited instruction set, limited floating-point support)

GPGPU

- Can we use GPUs for more than just gaming?
- Yes!
 - General Purpose Computing on GPUs (GPGPU)
 - Send the data to the GPU along with a program
 - Process it
 - Retrieve the finished data from GPU (instead of displaying it on screen)
- Only true if your application shares some high-level attributes with game rendering

GPGPU Strengths / Weaknesses

- Fast if your program involves:
 - Large data sets
 - Many parallel integer or floating-point operations
 - Minimal dependency between data elements (i.e. SIMD)
- ✓ Slower if your program involves:
 - Double precision floating-point
 - Logical operations on integer data
 - Lots of branches!
 - Random access / memory-intensive operations beyond the size of GPU memory

GPGPU Programming

- Challenge:
 - GPU architecture changes all the time!
 - # of independent threads, ALUs, memory size, etc...
 - How can we write one program that runs on many different GPU models?
- One solution from NVIDIA: CUDA
 - Compute Unified Device Architecture
 - Extension to the C programming language

CUDA Programming

- CUDA provides a mechanism to
 - Transfer data to from main memory to GPU
 - Initiate hundreds/
 thousands of threads on
 the GPU for data-parallel
 parts of the algorithm
 - GPU needs many threads (thousands) in order to run efficiently!
 - Transfer results from GPU back to main memory

