.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Compilers and
Assemblers

Schedule

Today and Friday — Compilers & Assemblers

Quiz 6 — Wednesday, April 11t

7

N N 3N

AN

Input / Output (HW #16)
Operating Systems (HW #17)
Compilers & Assemblers (HW #17)

Review the lecture notes before the quiz
(not just the homework!)

Bring a Calculator

Homework #16

Review HW #16
2 Amdahl’s Law

? Disk capacity / access time
Hard drive prefixes are powers of 10, not 2
?” SSD bottleneck — changing a byte!

2 SSD optimization - TRIM

Return and Review Quiz 5

Compilers & Assemblers

Computer Systems and Networks Spring 2012

Assembler

You used the MARIE assembler this semester
7 What was the input?
Mnemonic instructions (assembly code)

7 What was the output?
Machine code (binary)

Assembler

Most assemblers do this translation in two passes
over the source code

? Pass #1: Partially assemble the code and build
symbol table

? Pass #2: Complete the instructions by replacing
labels with the memory addresses stored in the

symbol table

You can do this by hand —it’s that easy!
? See Homework #8 problem

The assembler produces the binary machine code

The loader (part of the operating system) copies
the machine code from disk and places it in main
memory

Are we ready to execute it?

72 Not quite - there’s a challenge!

Memory Addresses

Imagine a system without virtual memory

The operating system wants to load and run two
programs at once:

? Program A will be placed at address 1000+
? Program B will be placed at address 5000+

What if the assembly code for program B was
hardwired to assume it started at address 0?

? The program would fail — we’d have to get the
programmer to send us a new version written to run at

address 5000...

Relocatable Binary Code

Obviously, that would be a huge pain...

Solution? Relocatable Code
? MARIE doesn’t use this, but real systems do

The assembler treats your program as if it started at
memory address O

?2 But, when the operating system loader copies the
binary code from disk into main memory (to execute
it), it modifies all your memory addresses

?2 New Mem Addr = Old Addr + Start Addr of Program

Binary Code

Three different types of binary code
? Absolute code — operand addresses are fixed

This is how MARIE works
Suitable for device and operating system code only

7 Relocatable code — code that can be copied to any memory
address, but must be modified before executing

Operand addresses are relative to where the operating system
chooses to load the program (i.e. offset from a base address)

The loader must adjust operands when loading the program

? Or, special registers in CPU provide base address

7 Position Independent Code — code that can be copied to any
memory address and run without modification

Linker

Real programs are typically written with multiple source files
and many subroutines

? Eachfile is assembled separately

7 But we need some way to join everything together into a
single executable file

This is the job of the linker (aka “link editor”)
72 Input —many files with binary machine code

2 Output —single file with all of the necessary binary machine
code

Linker also uses two passes:
?” Pass #1: Creates a symbol table
? Pass #2: Resolve references to the values in the symbol table

Linker + Loader

CALL ProcA
MyProg.obj MyProg.exe
(Main Program)
CALL ProcC CALL ProcA
CALL ProcB CALL ProcC
CALL ProcB
ProcCobj . 5 Linker —> —> Loader
......... '7 4
Proce ProcA
ProcB | ProcB
. ProcC
ProcB.obj | ProcA
I

.-+ ProcA.obj

Dynamic Linking

Regular linking happens at compile time (last step
to produce executable file)

Dynamic linking is when the linker runs when the

program is loaded (or even later — when the

program is running!)

? External modules are loaded from from dynamic link
libraries (DLLs)

2 Dynamic linking makes program modules smaller,
but carries the risk that the programmer may not
have control over the DLL

Language Levels

A
Generation +
Languages

(Natural Language)
4th Generation Languages Ease of
(SQL, LISP, etc.) Human

3rd Generation Languages Understanding

(Java, C, Pascal, FORTRAN, COBOL, etc.)

2nd Generation Languages (Assembly Code)

1st Generation Languages (Binary Machine Code)
\4

> Number of Instructions »

Remember that the computer can understand only the 15t GL!

Language Levels

Each language generation presents problem solving
tools that are:

72 Closer to how people think

72 Farther away from how the machine implements the
solution

Assembly code
7 Why would | want (or need) to use assembly code?
7 Why would | not want to use assembly code?

Compilers bridge the semantic gap between the higher
level language and the machine’s binary instructions

Compiler Operation

Compilers are much more complicated than
assemblers/linkers

Translation process takes 6 steps

The first three steps are source code analysis:

1. Lexical analysis extracts tokens, e.g., reserved words
and variables

2. Syntax analysis (parsing) checks statement
construction

3. Semantic analysis checks data types and the validity
of operators

Compiler Operation

The last three compiler steps are synthesis phases:

4. Intermediate code generation creates three address code
to facilitate optimization and translation

5. Optimization creates assembly code while taking into
account architectural features that can make the code
efficient

6. Code generation creates binary code from the optimized
assembly code

We write these steps as separate modules

? Benefit: Compilers can be written for various CPU
architectures by rewriting only the last two modules

Compiler Operation

Semantic
Analyzer

Intermediate |
Code
Generator

Parse
Tree

B” (float) 6

Code
Optimizer

A=B+6.0
Intermediate Code

Code
Generator

LOAD 0A2
ADD 0A6
STORE 0A0

Optimized Code

Interpreter

A compiler processes all the source code and produces a binary
executable first. Then, the executable is run.

Interpreters produce executable code from source code in real
time (i.e. while the program is running)

Pros?

72 Don’t have to wait for entire program to compile to test a part of it

? Portability — the program is distributed as the source code, and can
run on any machine architecture that has an interpreter

Cons?

72 Performance —the compiler runs once, but the interpreter runs
every time the program is executed

Java: All of the Above

Java exemplifies many of the concepts that we have
discussed in this chapter

Java programs (classes) execute within a virtual
machine, the Java Virtual Machine (JVM)

? This allows Java programs to run on any platform for
which a virtual machine environment has been written

Java is both a compiled and an interpreted language

2 The output of the compilation process is an assembly-like
intermediate code (bytecode)

? This bytecode is interpreted by the JVM

Java: All of the Above

The JVM is an operating system in miniature

? It loads programs, links them, starts execution
threads, manages program resources, and
deallocates resources when the programs terminate

Source
Code

Java Virtual Machine

Java File |

Java

.class File

.| Bytecode

Compiler

(bytecode) i

Verifier

Class
Loader

Bytecode
Interpreter

Java: All of the Above

At execution time, a Java Virtual Machine must be
running on the host system

It loads and executes the bytecode class file

While loading the class file, the JVM verifies the
integrity of the bytecode

The loader then performs a number of run-time
checks as it places the bytecode in memory

The loader invokes the bytecode interpreter

Java: All of the Above

The bytecode interpreter:

.

N

N

Run a linker over the bytecode instructions and asks the
loader to supply all referenced classes and system
binaries if they are not already loaded

Creates and initializes the main stack frame and local
variables

Creates and starts execution thread(s)

Manages heap storage by deallocating unused storage
while the threads are executing (garbage collection)

Deallocates resources of terminated threads

Upon program termination, kills any remaining threads
and terminates the JVM

Java: All of the Above

Because the JVM does so much as it loads and executes
its bytecode, it can't match the performance of a
compiled language

7 Alust-In-Time (JIT) compiler can help

Compiles blocks of to native machine code, and saves it
for future reuse

Benefits of using an interpreter?

2 Class files can be created on one machine architecture

and executed on a completely different machine
architecture

2 “Write once, run anywhere” model

