

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Exam 2 Review

Exam 2

- Similar format as last time
 - Closed notes, closed book, no calculator, etc...
 - **↗** I will provide Table 4.7 (MARIE ISA)
- Chapter 4 On the exam!
- **∇** Chapter 5 − On the exam!

Review Materials

- Things to study
 - Homework assignments
 - **₹** Solutions are posted in Sakai
 - Quiz 3 and 4
 - Solutions are posted in Sakai
 - Lecture notes
- Question format will be similar to quizzes
 - Mix of problems and short answer questions
 - Problems typically come from textbook...
 - Short answer questions typically come from lectures...

Chapter 4 – Computer Organization

Exam 2

Chapter 4 Topics

- Basic computer organization
- MARIE architecture
 - Major components and operation
- MARIE programs
 - "Write a complete program that does XYZ"
 - Subroutines, indirect instructions, etc..

Computer Organization

- What is a bus?
- → What does the clock do?
- Is increasing the clock rate the only way to improve application performance?

CPU Time=
$$\frac{\text{seconds}}{\text{program}} = \frac{\text{instructions}}{\text{program}} * \frac{\text{avg.cycles}}{\text{instruction}} * \frac{\text{seconds}}{\text{cycle}}$$

Reduce any of these, or all three!

Computer Organization

- What does addressability mean in the context of a memory system?
- Which type of memory system would require more address lines to access the same number of bytes: a word-addressable memory, or a byte-addressable memory?
- What is the difference between *high-order* and *low-order* interleaving? (What is interleaving?)

Memory Organization

- Exercise: Build a 1M x 16 word-addressable main memory using 128K x 4 RAM chips.
 - 1. How many address bits are needed per RAM chip?
 - 2. How many RAM chips are there per word?
 - 3. How many RAM chips are necessary?
 - 4. How many address bits are needed for all memory?
 - 5. How many address bits would be needed if it were byte addressable?
 - 6. How many banks will there be?
 - 7. What bank would contain address 47129₁₆ with (a) high-order interleaving or (b) low-order interleaving?

Solution to Exercise

- 1. Each RAM chip has 128K locations: $2^7 * 2^{10} = 17$ bits
- 2. Each RAM chip location stores 4 bits, but we need 16:
 - 1. 4 chips needed per word
- 3. Each RAM chip has 128K locations, but we need 1M locations:
 - 1. 1M/128K = 8 (times 4 chips per word) = **32 RAM chips** (8 rows, 4 columns)
- 4. Memory is $1M: 2^20 = 20$ bits for all of memory
- 5. Byte addressable adds 1 more bit here (to select either the lower 8 or upper 8 of the 16 bit long word): **21 bits**
- 6. **8 banks** of memory, where each bank has 4 chips
- 7. Address is 20 bits long, bank is upper 3 bits (2^3=8): 47129(16) = 0100 0111 0001 0010 1001 (2) With high-order interleaving, bank is #2 With low-order interleaving, bank is #1

MARIE Components

- AC?
- **PC?**
- **7** IR?
- **ALU?**
- MAR?
- **MBR?**

Chapter 5 - ISA

Exam 2

Chapter 5 Topics

- Endianness
- Infix and postfix notation
- Memory addressing modes
- Pipelines (concept, speedup, hazards)
- Instruction sets
 - O-address machines (i.e. stack machines)
 - 1-address machines (i.e. accumulator machines)
 - 2-address and 3-address machines (general purpose register machines)
- 7 different instruction types (data movement, arithmetic, etc...)

Pipeline Hazards

- In computer architecture, hazards are opportunities for data corruption and incorrect calculations if a naïve pipeline design does not detect specific error conditions and accommodate them, potentially by introducing delays ("stalls") in the pipeline.
- What is a
 - Data hazard?
 - Structural hazard?
 - Control hazard?

50 word Problem

- Data hazards represent obstacles preventing perfect parallel execution of instructions, such as when one instruction depends on a result produced by a previous instruction that has not yet finished (a data hazard), when multiple instructions rely on the same hardware element like a shared memory (a structural hazard), or when the next pipeline instruction cannot be immediately determined due to a yet-unresolved branch (a control hazard).
 - **7** 66 words