.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Instruction Set
Architecture

Schedule

Today
2 Closer look at instruction sets

Friday

Quiz 4 (over Chapter 5, i.e. HW #11 and HW #12)
Endianness?
Infix vs postfix notation?
Addressing modes? (direct, indirect, indexed, ...)
RISC vs CISC?

Not on Quiz: 5.22 (assembly code for generic
machines)

Problem 5.2 — Endianness

32-bit number 0x456789A1 starting at address 0x10

7 How is this saved in memory on a big endian
system? On a little endian system?

Address Big-Endian Little-Endian
0x10 45 Al
Ox11 67 89
Ox12 89 67
0x13 Al 45

One byte (8 bits) per location!

Related Problem

Addr Value If the data starting at address 10 is interpreted on a little-
endian system as an IEEE 754 single-precision value, what is

0x10 45 the decimal value?
Ox11 67
Read off number in correct order (0xA1896745) and convert
Ox12 89 to binary:
0x13 Al 2 10100001 1000100101100111 01000101
Interpret:

72 Sign: 1 (negative)
72 Exp: 01000011 (67 -127 = -60)
?2 Significand: 1.00010010110011101000101

Result: -1.00010010110011101000101 x 20

Problem 5.9(c) — Infix to Postfix

Convert from infix to postfix (RPN) notation:
5x(4+3)x2-6

5x(43+)x2-6
(543+x)x2-6
543+x2x -6

543+%x2x%x6-

6

Problem 5.11(c) — Postfix to Infix

Convert from postfix to infix notation:
357+ 2 1-x1++

2 Use a stack!

5o-Word Problem from HW #11

Describe the key design traits that classify a
computer processor as either "CISC" or "RISC"

design and state which part of the CPU
performance equation each design attempts to
optimize

Computer Systems and Networks Spring 2012

Addressing Modes

Computer Systems and Networks Spring 2012

Addressing Modes

Addressing modes specify where an operand is located

Choices?
2 Constant?
72 Register?

2 Memory location?

The actual location of an operand is called its
effective address

Certain addressing modes allow us to determine the
address of an operand dynamically

Addressing Modes

Immediate addressing
? The data is part of the instruction
2 Example: ADD 1 (where 1 is data, not an address)

Direct addressing

2 The address of the data is given in the instruction
? Example: ADD ONE (where “ONE” is a label)

Register addressing

A The number / name of the register that holds the data is
given in the instruction

? Example: ADDR1

Addressing Modes

Indirect addressing

? The address of the address of the data is given in
the instruction

A Example: ADDI POINTER

Register indirect addressing

7 Aregister stores the address of the address of the
data

?” Example: ADDI R1

Addressing Modes

Indexed addressing

7 Instruction names two things: index register (might be implicit) and an
address

Index Register holds an offset number (the “index number”)
Address is a base address

. Effective address of data = base + offset

. Example: ADD 4(R1)

Based addressing

P Same idea, but fields are reversed!

? Instruction names two things: base register and a displacement address
Base register holds the base address
Displacement address is the offset (“index”)

. Effective address of data = base + offset

Addressing Modes

Stack addressing

? Operand is assumed to be on top of the stack

(Even more) variations to these addressing modes!
? Indirect indexed

Self-relative

Auto increment / auto decrement

Too much detail for ECPE 170...

N N N

Let’s look at an example of the principal addressing modes

Addressing Modes Example

For the instruction shown, what value is loaded into the
accumulator for each addressing mode?

72 Assume R1is implied for Indexed mode...

Memory

LOAD 800
800 900
R1 800
900 1000
Value Loaded
1000 500 Mode into AC
Immediate

1100 600 Direct

Indirect
1600 700 Indexed

Addressing Modes Example

For the instruction shown, what value is loaded into the
accumulator for each addressing mode?

72 Assume R1is implied for Indexed mode...

Memor
y L.OAD 800
800 900
R1 800
900 1000
Value Loaded

Immediate /800 \
1100 600 Direct [900)

Indirect \ 1000 /
1600 700 Indexed \ 700 /

Addressing Modes Exercise

Exercise: For the instruction shown, what value is
loaded into the accumulator for each addressing

mode?
Memory
500 o LOAD 900
R1 | 200
900 1000
Value Loaded
1000 500 Mode into AC
Immediate

1100 600 Direct

Indirect
1600 700 Indexed

18

Instruction Pipelining

Computer Systems and Networks Spring 2012

Instruction Cycle

How does the processor execute a program?

Instruction Cycle

1. Fetch instruction from main memory
(0011 0110 0011)

2. Decode instruction
(Aha! It’s ADD!)

3. Execute instruction
(Configure arithmetic unit to ADD, retrieve data)

4. Store results in register

How do | do this quickly / efficiently?

Instruction Cycle

A laundry analogy...

?2 Laundry cycle instead of instruction cycle

Doing laundry in your residence hall
72 Washing machine — 35 minutes

A Dryer—60 minutes

?A Folding / Hanging — 8 minutes

How do you do one load of laundry the fastest?

Washer —> Dryer —> Fold =_103
minutes

35 60 8

Instruction Cycle for Laundry

How do you do two loads of laundry the fastest?
72 Back to back?

206 minutes total

Leaves machines idle at different times

2 Concurrently?

Load 1: | washer Dryer Fold
Load 2: Washer [f-----=------ > Dryer Fold
I
|

I
Time = 35, 60 60 8
|

Total: 163 minutes

Pipelining

7 This is pipelining
72 Performing work in parallel instead of sequentially

71 Goal: Keep all hardware busy
? Provides for instruction level parallelism (ILP)
71 Executing more than one instruction at a time

Without Pipelining: With Pipelining:
e
Fetc ec Exec Store Firstinstruction finishes... Fetch Dec Exec Store
h
y) ... before second starts Fetc Dec Exec Store 2 Fetch Dec Exec Store
h

Fetch Dec Exec Store

Computer Systems and Networks Spring 2012

Deeper Pipelining

We can do better than this

(Original) Laundry Room Specifications:
72 Washing machine — 35 minutes

A Dryer—60 minutes

?A Folding / Hanging — 8 minutes

What is the bottleneck in our simple pipeline?
? Drying takes much longer than the other stages

? This slows down the entire laundry process

Pipelining / Laundry Revisited

Load 1: | \washer Dryer Fold
Load 2: Washer [-----------= > Dryer Fold
Time = 35 : 60 : 60 : 8

Total: 163 minutes

How can we fix it? Get two dryers
? Operate them in parallel, or ...
2 COperate them in series for half the time
Each has a specialized task
First dryer set to hot (initial drying)
Second dryer set to cool (final drying / prevent shrinking)

Pipelining / Laundry Revisited

Ly
Result!
“FPANRRS

-
> <
——
——
—
—_
“—
A

Load 1: | \washer | Hot Dry |2 Cool Dry 2 Fold

Load 2: Washer | Hot Dry 2| Cool Dry 1 Fold

I
35 , 3 , 30 , 30 | 8
| I [I

Total: 138 minutes

How can we fix it? Get two dryers
? Operate them in parallel, or ...

2 COperate them in series for half the time
Each has a specialized task
First dryer set to hot (initial drying)

Second dryer set to cool (final drying / prevent shrinking)

Pipelining / Laundry Revisited

Better performance
A 206 minutes = 163 minutes =» 138 minutes
72 But now we're limited by the washer speed

How do we fix this?
2 Buy more machines, each doing smaller parts of the task

Could | benefit from 10 machines? 100? 1000?

72 Not shown in timeline: Time required to advance laundry
from one stage to the next

72 The time spent moving laundry between machines could
exceed the time spend in the machines ®

2 System becomes increasingly complex to design ®

Speedup of Instruction Pipelining

What is the theoretical speedup offered by a pipeline?

Let t, be the time per stage. Each instruction represents
a task, T, in the pipeline.

The first task (instruction) requires k x t, time to
complete in a k-stage pipeline. The remaining (n-1)
tasks emerge from the pipeline one per cycle. So the
total time to complete the remaining tasks is (n - 1)t,.

Thus, to complete n tasks using a k-stage pipeline
requires:
2 (kxt)+(n-1t, =(k+n-1)t

Speedup of Instruction Pipelining

If we take the time required to complete n tasks
without a pipeline (n*t,) and divide it by the time it
takes to complete n tasks using a pipeline, we find:

nt,
Speedup S =

(k+n—1)tp

If we take the limit as n approaches infinity,
(k + n - 1) approaches n, which results in a
theoretical speedup of:

ktp

I
N

t =k*t Speedup § =

n p
tP

Speedup of Instruction Pipelining

Example:
7 Non-pipelined CPU has a clock period t, = 100ps
2 CPU is redesigned to be pipelined

k=5 stages

clock period t, = 20ps

The theoretical speed-up is 100ps/20ps = 5.

If we execute n=1,000 sequential tasks (instructions),
the actual speed-up is

S nt, 1000x100ps 100,000 ps

_ — = =4 .98
(k+n-Dt, (5+1000-1)x20ps 20,080ps

Speedup of Instruction Pipelining

Exercise

?2 Suppose we have a non-pipelined CPU with a clock
period t, of 150ps

? We redesign the CPU to be a 6 stage pipeline with a
clock period t, of 30ps.

N

What is theoretical speed-up?

A

If we execute n=500 sequential tasks (instructions),
what is the actual speed-up?

Speedup of Instruction Pipelining

The theoretical speed-up is 150ps/30ps = 5.

If we execute n=500 sequential tasks (instructions),
the actual speed-up is

500x150ps 75,000 ps

= =4.950495...
(6+500-1»30ps 15,150ps

Instruction-Level Pipelining

Real life is not as perfect as these examples would indicate!

We made a huge assumption here: t, =k * t;

If this is true, then the pipeline is perfectly balanced

2 The hardware in every stage takes the exact same amount of time
to operate

Most pipelines are not balanced
72 Some stage takes longer to operate than others

Example: getting data from memory is slower than decoding the
opcode

2 When the pipeline is not balanced, t, is determined by the slowest
stage

2 Ift, < k*t,, the speedup of a k-stage pipeline cannot be k

Instruction-Level Pipelining

7 Real life is even worse — there are more problems
than simply having some stages be slower than
others!

7 The architecture may not support fetching
instructions and data in parallel

72 Need separate memories
A More hardware = more SS

Computer Systems and Networks Spring 2012

Instruction-Level Pipelining

Computer Systems and Networks

We might not always be able to keep the pipeline full of
instructions

? Hazards cause pipeline conflicts and stalls

Example hazards

? Data hazards (dependencies)

Structural hazards (resource conflicts)
Control hazards (conditional branching)

Your 50-word problem for HW #13 (due after spring
break) asks you to explain these hazards

2 70-word limit for this one!

Spring 2012

Instruction-Level Pipelining

Hazards can cause pipeline to stall or flush
Stall — pipeline is delayed for a cycle
? Flush — all instructions in pipeline are deleted

Clever hardware or clever assembly programmers
(or optimizing compilers) can reduce the effects of

these hazards
?2 But not fully eliminate them...

