.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Instruction Set
Architecture

Schedule

Today and Wednesday

2 Closer look at instruction sets

Fri
? Quiz 4 (over Chapter 5, i.e. HW #11 and HW #12)

Endianness

Many questions to answer when designing an
instruction set:

? Byte ordering (or endianness)?

If we have a two-byte integer, how is that stored in
memory?

Endianness

Gulliver’s Travels

7 What is a little endian
computer system?

? Little-endian: lower bytes
come first (stored in lower
memory addresses)

72 Ex:Intel x86/x86-64

7 What is a big endian
computer system?

72 Higher bytes come first
72 Ex:IBM PowerPC

Computer Systems and Networks Spring 2012

Endianness

As an example, suppose we have the hexadecimal
number 0x12345678

2 e bytes0x12, 0x34, 0x56,0x78

The big endian and little endian arrangements of
the bytes are shown below.

Lowest Address
Address > 00 01 10 11
Big Endian 12 34 56 78
Little Endian 78 56 34 12

Endianness

Seriously, why have two different ways to store data?

Big endian:

72 The sign of the number can always be determined by looking at the
byte at address offset 0

? Strings and integers are stored in the same order

Little endian:
2 Makes it easier to place values on non-word boundaries.

2 Conversion from a 16-bit integer address to a 32-bit integer address
does not require any arithmetic

Take a 32-bit memory location with content 4A 00 00 00

Can read at the same address as either
A 8-bit (value = 4A), 16-bit (004A), 24-bit (00004A), or 32-bit (0000004A),

Endianness

Example: Howis 19714C2F stored in little and big
endian formats at address 1407

?2 Little endian
140,,=2F ¢
141,.=4C,
142,. =71,
143,.=19,,

72 Bigendian
140,,=19,,
141,.=71
142, =4C,,
143,.=2F,,

Endianness

How is DEADBEEF stored in little and big endian
formats at address 21C,.?

?2 Little endian
21C,=EF,,
21D, =BE,,
21E,, =AD,,
21F, =DE,,

72 Bigendian
21C,=DE,,
21D,.=AD,
21E,. =BE,
21F, =EF,,

Processor Data Storage

Computer Systems and Networks Spring 2012

Instruction Formats

Next design questions: How will the CPU store data?

Three choices:
1. A stack architecture
2. An accumulator architecture

3. A general purpose register architecture

Tradeoffs
? Simplicity (and cost) of hardware design
? Execution speed

2 Ease of use

Stack vs Accumulator vs Register

Stack architecture
? Instructions and operands are implicitly taken from the stack
?2 Stack cannot be accessed randomly

Accumulator architecture

? One operand of a binary operation is implicitly in the accumulator
? One operand is in memory, creating lots of bus traffic

General purpose register (GPR) architecture
7 Registers can be used instead of memory

? Faster than accumulator architecture

72 Efficient implementation for compilers

? Results in longer instructions

General Purpose Register Architectures

Most systems today are GPR systems

There are three types:

7 Memory-memory where two or three operands
may be in memory

7 Register-memory where at least one operand must
be in a register

? Load-store where no operands may be in memory

The number of operands and the number of
available registers has a direct affect on instruction
length

Stack Architecture

Stack machines use one - and zero-operand instructions.

LOAD and STORE instructions require a single memory
address operand

Other instructions use operands from the stack implicitly

PUSH and POP operations involve only the stack’s top
element

Binary instructions (e.g., ADD, MULT) use the top two
items on the stack

Stack Architecture

Stack architectures require us to think about
arithmetic expressions a little differently

We are accustomed to writing expressions using
infix notation, such as: Z=X+Y

Stack arithmetic requires that we use
postfix notation: Z = XY+
2 Thisis also called reverse Polish notation,

(somewhat) in honor of its Polish inventor, Jan
Lukasiewicz (1878 — 1956)

Postfix Notation

The principal advantage of postfix notation is that
parentheses are not used

? .. plusitis easy to evaluate on a stack machine

Infix expression
A Z=(XxY)+(WxU)

|dentical Postfix expression
A =XYxWUx+

Postfix Notation

Example: Convert the infix expression to postfix
A (2+3)-6/3

2 3+ - 6/3 The sum 2 + 3 in parentheses takes
precedence; we replace the term with
2 3 +.

Postfix Notation

Example: Convert the infix expression to postfix
A (2+3)-6/3

23+.g3/ Thedivision operator takes next
precedence; we replace 6/3 with
63/.

Postfix Notation

Example: Convert the infix expression to postfix
A (2+3)-6/3

23+@3/- Thequotient 6/3 is subtracted from
the sum of 2 + 3, so we move the -

operator to the end.

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-

Scanning the S 63| /]-
expression from left to
right, push operands

onto the stack, untilan |3
operator is found 2

—

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

Pop the two operands |- 5 |+ lgl3 /] -
and carry out the | $

operation indicated by
the operator. Push the
result back on the

stack.

21

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

/| -
Push operands until t
another operator is 3
found. 6

22

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

Carry out the 1
operation and
push the result.

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

Finding another 23 +1613 /-
operator, carry out the $
operation and push
the result.

The answer is at the
top of the stack.

Infix Expression and ISA

Let's see how to evaluate an infix expression
using different instruction formats

With a three-address ISA, (e.g.,mainframes),
the infix expression

/= X x Y + W x U

might look like this

2 MULT R1,X,Y
MULT R2,W,U
ADD Z7,R1,R2

Infix Expression and ISA

In a two-address ISA, (e.g., Intel, Motorola),
the infix expression

/= X x Y + W x U

might look like this

7 1LOAD R1,X

Note: Two-address

ISAs usually
MULT R1,Y require one
LOAD RZ,W operand to be a
MULT R2,U register
ADD R1,RZ

STORE Z,R1

Infix Expression and ISA

7 In a one-address ISA, like MARIE, the infix
expressionZz = X x Y + W x U

looks like this:

2 LOAD X Notice that as the
MULT Y instructions get shorter, the
STORE TEMP program gets longer...
LOAD W
MULT U Tradeoff — Hopefully these
ADD TEMP small instructions are faster

STORE Z than the large instructions!

Computer Systems and Networks Spring 2012

Postfix Expression and ISA

In a stack ISA, the postfix expression
/= X Y x W U x +

might look like this:
Would this program require

A PUSH X
PUSH Y more execution time than
MULT the corresponding (shorter)
PUSH W program that we saw in the
PUSH U 3-address ISA?
MULT
ADD

POP %

Postfix Expression and ISA

Implement the postfix Convert the postfix
expression expression to infix notation

Z = ABC+ x D -
in a stack ISA

Postfix Expression and ISA

Implement the postfix Convert the postfix
expression expression to infix notation
Z=ABC+ xD - ? Build up a stack to help
in a stack ISA convert back to infix
7 PUSHA notation

PUSH B 2 (A*(B+C)-D)

PUSH C

ADD

MULT

PUSH D

SUBT

POP Z

30

Instruction Types

Computer Systems and Networks Spring 2012

Instruction types

7 broad categories of processor instructions:
Data movement
Arithmetic
Boolean

Take 3 minutes and
brainstorm examples

Bit manipulation
P of each

/O
Control transfer

A X N N N NN

Special purpose

Instruction Types — Data Movement

Data movement

72 Moves data between memory, registers, or both

Examples

72 MARIE instructions: LOAD X and STORE X
PUSH and POP instructions

EXCHANGE: swap two values

May be different instructions for different sizes or
types of data (LOADINT and LOADFLT)

N N N

Instruction Types - Arithmetic

Arithmetic

? Operations which involve the ALU to perform a
calculation

Examples

A MARIE instructions: ADD X, SUBT X, ADDI X

2 MULTIPLY and DIVIDE

? INCREMENT and DECREMENT: add or subtract 1 from a
value

2 NEGATE: unary minus

72 Integer and floating point instructions

72 Some instruction sets even include scientific operations

(SINE, SQRT, etc)

Instruction Types — Boolean

Boolean

7 Logical operations on groups of bits

Examples
2 ANDX
Performs “bit-wise” operations
ACC 0 1 1 0 1 1 0 0
X 1 1 1 1 0 0 0 0
ACC 0 1 1 0 0 0 0 0

2 OR, NOT, XOR, COMPARE instructions

Instruction Types — Bit Manipulation

Bit manipulation
72 Non-Boolean operations on bits

Examples
2 ROTATE and SHIFT instructions

ROTATE moves all bits left or right, and bits which
are “shoved out” one side get “shoved in” the other

A Example: ROTATEL 3 / rotate left 3 bits

ACC 0 1 0 0 0 0 1 1

ACC 0 0 0 1 1 0 1 0

Instruction Types — Bit Manipulation

SHIFT moves all bits left or right, and bits which are
“shoved out” are discarded

For left shifts, O’s are shifted in

For right shifts, the bits shifted in depends on
whether the shift is logical or arithmetic

? Logical: Shiftin 0’s
? Arithmetic: Copy the leftmost bit (sign bit)

Thus, a negative number stays negative!

Instruction Types — /O

Input / Output
A Transfer data from system to/from external devices

Examples
2 MARIE instructions: INPUT and OUTPUT

A Some processors have no special /0 instruction and
instead use memory-mapped 1/0, treating I/O
devices like “special” memory

Instruction Types — Control Transfer

Control transfer

? Alter the normal sequence of program execution

Examples

72 MARIE’s JUMP, JUMPI, JNS, SKIPCOND, and HALT
Other processors have instructions like

BEQ/BNE (branch equal/not equal)

DJNZ (decrement and jump if not zero)

CIJNE (compare and jump if not equal)

Instruction Types — Special Purpose

Special purpose
? Just about everything not covered above

?2 These can provide access to special hardware
specific to the CPU

Intel’s SSE (Streaming SIMD Extensions) and AMD’s
3DNow! instructions for multimedia applications

String manipulation instructions

