.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Introduction to
MARIE




Schedule

Today
2 Introduce MARIE

Wed 15% and Fri 17t

2 Assembly programming tutorial



Recap — MARIE Overview

How does the MARIE architecture represent
positive/negative numbers?

7 Binary, two’s complement data representation

How is MARIE’s main memory configured?
(# of words, size of each word)

2 4K words, 16 bits wide, word-addressable



Recap — MARIE Overview

MARIE has seven registers for control and data
movement

AC?
MAR?
MBR?
PC?

IR?
InReg?
OutReg?

A N N X N N DN



Recap — MARIE Data Path

Bus
—» Main Memory g

Common data bus > <
72 Links main memory and registers e N
?2 Each device identified by unique 5
number = >
. . . -\ 3
? Bus has control lines that identify MBR >

. . hd v
device used in operation t I | ALU >4
AC F———
Dedicated data paths / _/ il

A Permits data transfer between > INREG >
accumulator (AC), memory buffer .
register (MBR), and ALU without using —>{ OutREG >

main data bus

16-bit bus




Recap — MARIE ISA

What is an Instruction Set Architecture (ISA)?
7 Interface between hardware and software
? Specifies the format of processor instructions

? Specifies the primitive operations the processor can
perform



Binary
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Recap — MARIE Instructions (Full)

Hex

m O O @ » © 0o N o u o W N -

Instruction
LOAD X
STORE X
ADD X
SUBT X
INPUT
OUTPUT
HALT
SKIPCOND
JUMP X
CLEAR
ADDI X
JUMPI X
LOADT X
STOREI X

Meaning

4.7 in
book!

Load contents of address X into AC
Store contents of AC at address X
Add contents of address X to AC
Subtract contents of address X from AC

Input value from keyboard into AC

Output value in AC to display

Terminate program

Skip next instruction on condition based on AC value
Load value of X into PC

SetACto O

Add contents of address Mem[X] to AC

Load contents of address Mem[X] into PC

Load contents of address Mem[X] into AC

Store contents of AC at address Mem([X]

See table



Recap — MARIE Instructions

How does MARIE format instructions in computer

memory?
Opcode Address
] 1 | I N T R
Bit Bit Bit Bit
19 12 11 0
Two fields

? Opcode (4 bits) — Operation code
? Address (12 bits) — Address to operate to/from



MARIE Programming

Computer Systems and Networks Spring 2012



A Simple Program

Consider this simple MARIE program

Address | Instruction Bb:,l';?nr% ;ozzr:‘tas;:f H::‘ ﬁg::fz"ryts
100 Load 104 0001000100000100 1104
101 Add 105 0011000100000101 3105
102 Store 106 | 0100000100000110 4106
103 Halt 0111000000000000 7000
104 0023 0000000000100011 0023
105 FFES 1111111111101001 FFES
106 0000 0000000000000000 0000




A Simple Program

What happens inside the computer when our
program runs?

72 Instruction 1: LOAD 104
Step RTN PC IR MAR | MBR AC
(initial values) o1, 7] BSOCERE ot |  (T a
Fetch MAR<€—PC 100 |------ B o i i) o
IR €<——M[MAR] 100 | 1104 | 100 |------)------
g S e - I A 101 | 1104 | 100 |------]------
Decode MAR€— IR[11-0] 101 | 1104 [EgB&Y ------] ------
(Decode IR[15-12]1)) 101 | 1104 ] 104 |------]------
Get operand MBR €«— M [MAR] 101 | 1104 | 104 | 0023 |------
Execute AC €——MBR 101 1104 104 0023 0023




A Simple Program

Instruction 2: ADD 105

Step RTN PC IR MAR | MBR AC
(initial values) 101 | 1104 | 104 0023 | 0023
Fetch MAR €— PC 101 | 1104 | 101 0023 | 0023

IR €——M[MAR] 101 | 3105 | 101 0023 | 0023
PCS———PC + 1 102 | 3105 | 101 0023 | 0023
Decode MAR€— IR[11-0] 102 | 3105 | 105 | 0023 | 0023
(Decode IR[15-12])] 102 | 3105 | 105 0023 | 0023
Get operand MBR €— M [MAR] 102 3105 105 FFEQ9 0023
Execute AC €«<——AC + MBR 102 | 3105 | 105 | FFE9 | 000C




13

Assembler

Computer Systems and Networks Spring 2012



Role of Assembler

Mnemonic instructions: LOAD 104
2 “Easy” for humans to write and understand

72 Impossible for computers to understand

Role of assembler

? Translate instructions from assembly language (for
humans) into machine language (for computers)



Assembler versus Compiler

What's the difference between an assembler and a
compiler? Which has the harder job?
A Assembly language =» machine language
One-to-one correspondence
Assembler is simple!
? High-level language = machine language
Many-to-one correspondence

Compiler is complicated!



Assembler Operation

Assemblers create an object file (containing
machine code) from mnemonic assembly source
code in two passes

Pass 1

72 Assemble as much of the program as possible

# Builds a symbol table (contains memory references
for all symbols in the program)

Pass 2

? Complete instructions. Fill in addresses stored in the
symbol table



Assembler Operation

Address Instruction
Example program
7 HEX and DEC directives t 100 Lioad A
gn . irectives to 101 Add v
specify radix of constants
102 Store Z
Assembler Pass #1 103 Halt
? Create symbol table 104 X, DEC 35
7 Create partially-assembled 182 X'y DEC -23
instructions Z HEX ey
Partially- 1
Symbol X | 104 Assembled ;
Table: Y
P :
Name, Y | 105 rogram ;
Address 106
7000




Assembler Operation

71 Assembler Pass #2
2 Fill in details from symbol table

Symbol I Machine
Table o Code

Computer Systems and Networks Spring 2012



Assembler Operation

Machine Code:

11014

3105

2106

Program:
Address Instruction Symbol Table:
100 Load X X | 104
101 Add Y

Y 105
102 Store Z
103 Halt Z | 106
104 X, DEC 35
105 Y, DEC -23
106 Z, HEX 0000

7000

0023

FFEOS

O0O0O




20

More MARIE Instructions

Computer Systems and Networks Spring 2012



New Addressing Modes!

Direct addressing mode
A All the instructions covered to date...

72 The address of the operand is explicitly stated in the
instruction

New: Indirect addressing mode

2 The address of the address of the operand is given
in the instruction

? Just like pointers in COMP 51/53




Indirect Addressing Mode Instructions

Four new instructions use indirect addressing
mode: Load / store / add / jump indirect

LOADI X and STOREI X — specified the address of
the address of the operand to be loaded or stored

2 InRTL:
LOADI X STOREI X
MAR < X MAR <« X
MBR < M[MAR] MBR < M[MAR]
MAR < MBR MAR < MBR
MBR < M[MAR] MBR < AC
AC <« MBR M[MAR] < MBR




Indirect Addressing Mode Instructions

ADDI X - Combination of LOADI X and ADD X:

7 InRTL:
ADDI X

MAR <« X
MBR < M[MAR]
MAR < MBR

MBR < M[MAR]
AC < AC + MBR




Subroutine Instructions

Remember subroutines? (i.e. functions)

Machine instructions can make subroutines easier
to implement

? Jump-and-store instruction (JINS X) provides
limited subroutine functionality

2 RTL: |ymr < pe Does J.NS permit
MAR <« X recursive calls?
M[MAR] < MBR No, PCis stored at
MBR <« X address X, and we jump
AC < 1 to address X+1. You
AC < AC + MBR can’t do this
PC < AC repeatedly!




Clear Instruction

CLEAR instruction
2 Set the contents of the accumulator to all zeroes.

RTL for CLEAR: AC < 0



Binary
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Hex

O 00 N o Ul | b W N -

o I Y "= G gy TN
A W N L O

Instruction
LOAD X
STORE X
ADD X
SUBT X
INPUT
OUTPUT
HALT
SKIPCOND
JUMP X
CLEAR
ADDI X
JUMPI X
LOADT X
STOREI X

26

MARIE Instructions (Full)

Meaning See table

4.7 in
book!

Load contents of address X into AC
Store contents of AC at address X
Add contents of address X to AC
Subtract contents of address X from AC

Input value from keyboard into AC

Output value in AC to display

Terminate program

Skip next instruction on condition based on AC value
Load value of X into PC

SetACto O

Add contents of address Mem[X] to AC

Load contents of address Mem[X] into PC

Load contents of address Mem[X] into AC

Store contents of AC at address Mem([X]



