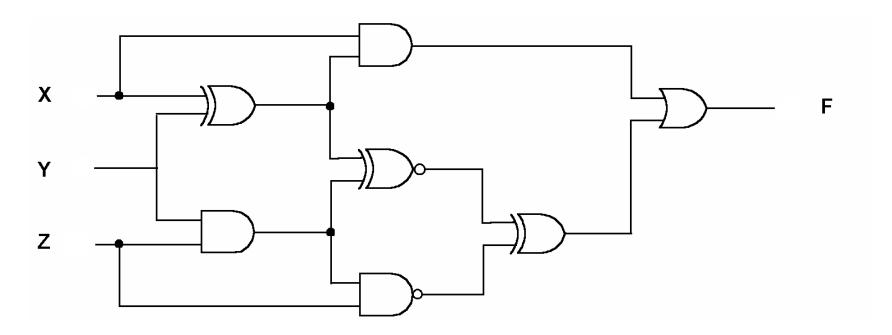
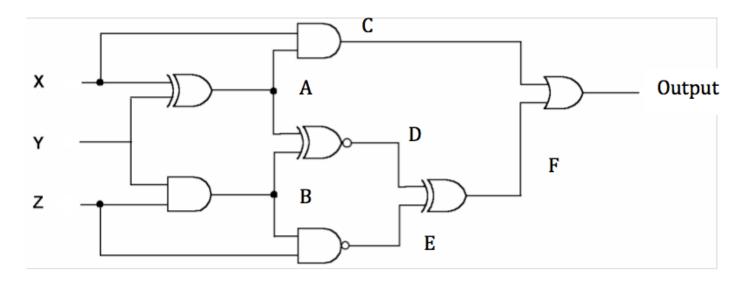


Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific


Design of a Simple Computer


Schedule

- **7** Today
 - **♂** Simple computer organization + Quiz 2
- Monday 6th
 - Simple computer organization (continued)
 - Exam review
- Wednesday 8th Exam 1
 - Exam covers all of Chapters 2 and 3
 - → Study: Homework, Quizzes, review slides
- Friday 10th
 - Introduce new machine architecture MARIE and assembly programming language

Homework 5 – 3.34

Find the truth table that describes the circuit:

+										
	X	Y	<u>Z</u>	A	В	C	D	E	F	Output
	0	0	0	0	0	0	1	1	0	0
	0	0	1	0	0	0	1	1	0	0
	0	1	0	1	0	0	0	1	1	1
	0	1	1	1	1	0	1	0	1	1
	1	0	0	1	0	1	0	1	1	1
	1	0	1	1	0	1	0	1	1	1
	1	1	0	0	0	0	1	1	0	0
	1	1	1	0	1	0	0	0	0	0

Tip 1: The little circle on a gate typically represents negation (of either the input or output, depending on location). Thus, this circuit contains a negated AND (NAND) gate, as well as a negated exclusive-OR gate.

Tip 2: Don't try to do it all in your head! Add intermediate points (A-F) to see data progressing through circuit.

Measures of Capacity and Speed

- **7** Kilo- (K) = 1 thousand = 10^3 and 2^{10}
- Mega- (M) = 1 million = 10^6 and 2^{20}
- **7** Giga- (G) = 1 billion = 10^9 and 2^{30}
- **7** Tera- (T) = 1 trillion = 10^{12} and 2^{40}
- **Peta-** (P) = 1 quadrillion = 10^{15} and 2^{50}
- **7** Exa- (E) = 1 quintillion = 10^{18} and 2^{60}
- **Zetta-** (Z) = 1 sextillion = 10^{21} and 2^{70}
- **7** Yotta- (Y) = 1 septillion = 10^{24} and 2^{80}

Whether a metric refers to a power of ten or a power of two typically depends upon what is being measured.

Introduction

- Chapter 4 in textbook
- Course to date
 - Chapter 2 Representing numbers/letters in a computerfriendly format
 - Chapter 3 Creating digital circuits that implement Boolean functions and store data
- Next goal
 - Combine these basic components to build a simple (but functional) computer
 - Program that computer (in assembly language)

CPU Basics

- Steps to run a program?
 - **Fetch** instruction from memory
 - Decode instruction to determine operation
 - **Execute** instruction
- Many components are needed to accomplish this

CPU Basics

Two main components: datapath and control unit

Datapath

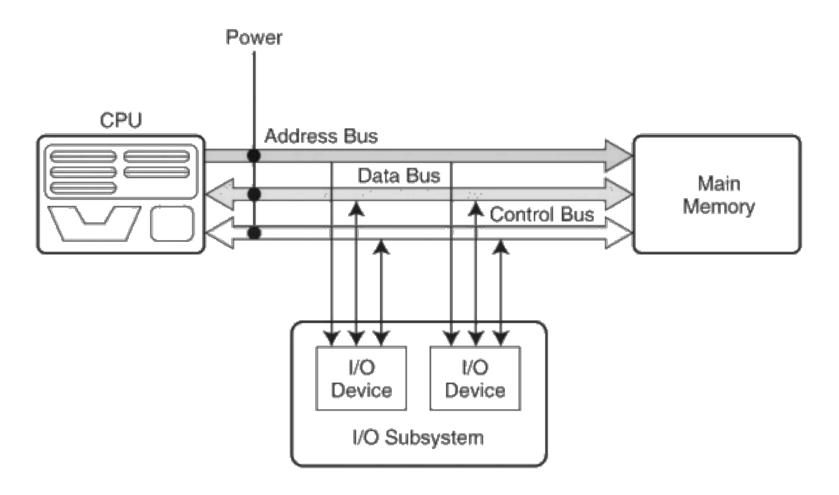
- Arithmetic-logic unit
- Storage units (registers)
- Connected by a data bus that also reaches main memory

Control Unit

- Responsible for sequencing operations
 - What does hardware do first?
 - What does hardware do second?
 - What does the ALU do?

Registers

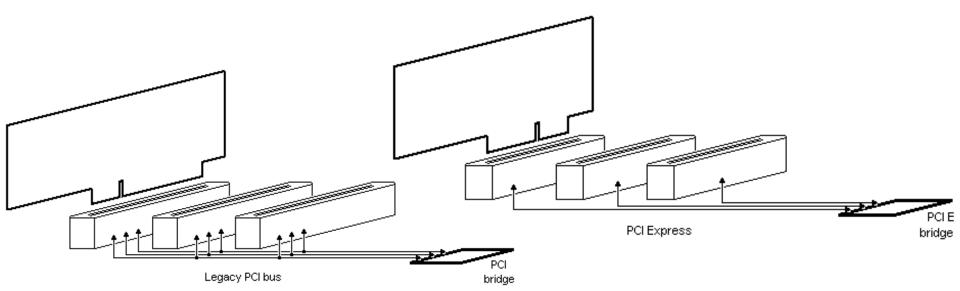
- Registers hold data that can be readily accessed by the CPU
 - Much faster than main memory
- Implemented using D flip-flops
 - A 32-bit register requires 32 D flip-flops


Data Bus

- Data bus moves data between CPU components
 - **A** bus is a **set of wires** (8, 16, 32, 64, ...)
 - One bit per wire per clock cycle
- Bus components
 - Data lines
 - Move data

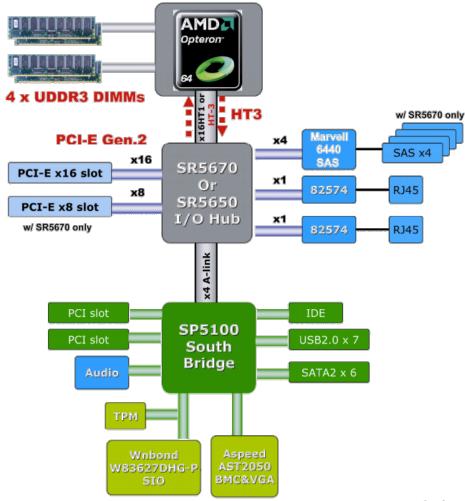
- Address lines
 - Determine location of data (either source or destination)
- Control lines
 - Determine direction of data flow

Example Bus

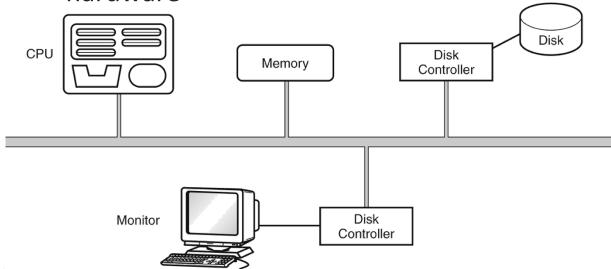

Point-to-Point vs Multipoint

Multipoint Bus

- Connect two components via shared wires
- **Example:** PCI bus


Point-to-Point Bus

- Connect multiple components via dedicated wires
- Example: PCI-e bus


Modern AMD Opteron System

Multipoint Bus

- Multipoint bus is a shared resource
 - When can I access this shared resource?
 - What can others access it?
 - Controlled through protocols implemented in hardware

Clocks

- Computer components must be carefully synchronized
 - Use a clock (think of a "drummer", rather than a "watch")
- Fixed number of clock cycles are required to carry out each data movement or computational operation
- Clock frequency determines the speed with which all operations are carried out.
 - Measured in megahertz or gigahertz
 - Clock cycle time is the reciprocal of clock frequency
 - An 800 MHz clock has a cycle time of 1.25 ns.

Clocks

- Clock speed does not (directly) equal CPU performance!
- CPU time required to run a program:

CPU Time=
$$\frac{\text{seconds}}{\text{program}} = \frac{\text{instructions}}{\text{program}} * \frac{\text{avg.cycles}}{\text{instruction}} * \frac{\text{seconds}}{\text{cycle}}$$

- How can we decrease CPU time? Many ways!
 - Reduce the number of instructions in a program
 - Reduce the number of cycles per instruction
 - Reduce the number of nanoseconds per clock cycle

The Input/Output Subsystem

- A computer communicates with the outside world through its input/output (I/O) subsystem
- Two different ways I/O devices can function
 - Memory-mapped: the I/O device behaves like main memory from the CPU's point of view.
 - Instruction-based: the CPU has a specialized I/O instruction set
- Modern devices are typically memory-mapped
 - But CPUs still have legacy I/O instructions...

Interrupts

- High priority events (requiring immediate handling) can alter normal program flow
 - 7 I/O requests
 - Arithmetic errors (division by 0)
 - Invalid instructions
- **CPU** is notified of the high-priority event via an **interrupt**
 - Nonmaskable interrupts are high-priority interrupts that cannot be ignored
- Each interrupt is associated with a procedure (subroutine) that tells the CPU what to do
 - Copy data from the NIC?
 - Give the video card a new frame to display?