

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Karnaugh Maps

Schedule

- Friday 3rd Quiz 2
 - Review K-maps and/or Simple computer organization
- Monday 6th
 - Simple computer organization
 - Exam review
- Wednesday 8th Exam 1
 - Will discuss later
 - Exam covers all of Chapters 2 and 3

Recap

What is the difference between a decoder and a multiplexer?

Recap

- What is the clock of a digital circuit?
- Square wave signal
- "Pulse" of a sequential circuit allows events to happen in a sequence

Recap

What are the <u>outputs</u> of these common flip-flops? (and what are their names?)

s	R	Q(t+1)
0	0	Q(t) (no change)
0	1	0 (reset to 0)
1	0	1 (set to 1)
1	1	undefined

J	K	Q(t+1)
0	0	Q(t) (no change)
0	1	0 (reset to 0)
1	0	1 (set to 1)
1	1	Q(t)

D	Q(t+1)
0	0
1	1

- **7** Chapter 3A in textbook
- ➢ Simplification of Boolean functions is good...
 - Produces simpler (and usually faster) digital circuits
- ... but also time-consuming and error-prone
 - Easy to mis-use identities

- K-Maps are an easy, systematic method for reducing Boolean expressions
 - Named after Maurice Karnaugh (engineer at Bell Labs in 1950's)
 - Invented a graphical way of visualizing and then simplifying Boolean expressions

- A Kmap is a matrix representing a Boolean function
 - Rows and column headers represent the input values
 - Cells represent corresponding output values
- Input values are formatted as minterms
 - Minterm is a product term that contains all of the function's variables exactly once, either complemented or not complemented

Disclaimer

- **WARNING:** Are you currently taking ECPE 71 this semester? (or have already taken it?)
 - Do K-Maps the way Dr. Basha told you to!
- Our book
 - Flips the axis (w x on left, y z on top)
 - Only cares about consolidating 1's, and thus doesn't always write in the 0's
- The answer is the same, so use whatever process you <u>already know</u>

Minterms

- For example, the minterms for a function having the inputs x and y are: \overline{xy} , \overline{xy} , $x\overline{y}$, and xy
- Consider the Boolean function,
- Its minterms are:

$$F(x,y) = xy + x\overline{y}$$

Minterm	x	Y
ΣŢ	0	0
ХХ	0	1
ΧŢ	1	0
XY	1	1

Minterms

- **7** Function with three inputs?
 - Minterms are similar...
 - Just imagine counting in binary to find all the minterms...

Minterm	x	Y	Z
$\overline{x}\overline{y}\overline{z}$	0	0	0
$\overline{X}\overline{Y}Z$	0	0	1
$\overline{X}Y\overline{Z}$	0	1	0
Z YZ	0	1	1
$x\overline{Y}\overline{Z}$	1	0	0
ΧŸΖ	1	0	1
$xy\overline{z}$	1	1	0
XYZ	1	1	1

- A Kmap has a cell for each minterm
 - Cell for each line for the truth table of a function
- The truth table for the function F(x,y) = xy is shown along with its corresponding Kmap

$$F(X,Y) = XY$$

X	Y	XY
0	0	0
0	1	0
1	0	0
1	1	1

- 7 Truth table and Kmap for the function F(x,y) = x + y
- This function is equivalent to the OR of all of the minterms that have a value of 1

$$F(x,y) = x + y = \overline{x}y + x\overline{y} + xy$$

$$F(X,Y) = X+Y$$

X	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

X	0	1
0	0	1
1	1	1

- Minterm function derived from Kmap was not in simplest terms
- Use Kmap to reduce expression to simplest terms
 - Find adjacent 1's in the Kmap that can be collected into groups that are powers of two

Two groups in this example:

- Selected groups shown below
 - Groups are powers of two (# of elements)
 - Overlapping is OK!

Rules for Simplification

- ☐ Groupings can contain only 1's; no 0's
- □ Groups can be formed only at right angles
 - Diagonal groups are not allowed
- The number of 1's in a group must be a power of 2
 - → A single 1 is OK then, but not three 1's!
- Groups must be made as large as possible
 - Otherwise simplification is incomplete
- Groups can overlap
- Groups can wrap around the sides of the Kmap

- Extend to three variables? Easy!
- Warning! Note that the values for the yz combination at the top of the matrix form a pattern that is **not a normal binary sequence**
 - **7** Each position can only differ by 1 variable

- What do the values look like?
 - First row contains all minterms where x has a value of zero.
 - First column contains all minterms where y and z both have a value of zero

Example:

$$F(X,Y) = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}Z + XYZ$$

Kmap:

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

What is the largest group of 1's that is a power of 2?

- Look at the grouping closely
 - Changes in the variables x and y have no influence upon the value of the function
 - Thus, the function

$$F(X,Y) = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}Z + XYZ$$

7 reduces to F(x) = z

You could verify this reduction with identities or a truth table

Example:

$$F(X,Y,Z) = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}YZ + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

7 Kmap:

X	Z 00	01	11	10
0	1	1	1	1
1	1	0	0	1

- What are the largest groups of 1's that are a power of 2?
 - How many groups do you see?

- To make the **largest groups possible**, wrap around the sides
- How do we interpret results?
 - **♂** Green row?
 - Pink square?

- Green group only the value of x is significant
 - 7 Thus, \overline{X}
- → Pink group only the value of z is significant.
- Our reduced function is: $F(X,Y,Z) = \overline{X} + \overline{Z}$

Recall that we had six minterms in our original function!

- Model can be extended to accommodate a fourinput function
 - 16 minterms produced

Y WX	z 00	01	11	10
0.0	WXYZ	WXYZ	WXYZ	WXYZ
01	WXYZ	WXYZ	WXYZ	WXYZ
11	WXŸZ	WXYZ	WXYZ	WXYZ
10	WXYZ	WXYZ	WXYZ	WXYZ

- Example: $F(W,X,Y,Z) = \overline{WXYZ} + \overline{WXYZ} + \overline{WXYZ}$ + $\overline{WXYZ} + \overline{WXYZ} + \overline{WXYZ} + \overline{WXYZ}$
- Kmap (showing non-zero terms)
- What <u>largest</u> groups should we select?
 - Groups can overlap!
 - Groups can wrap!

Y WX	Z 00	01	11	10
00	1	1		1
01				1
11				
10	1	1		1

7 Three groups

- Pink group that wraps top and bottom
- Green group that spans the corners
- Purple group entirely within the Kmap at the right

$$F(W, X, Y, Z) = \overline{X}\overline{Y} + \overline{X}\overline{Z} + \overline{W}Y\overline{Z}$$

- Kmap simplification may not be unique
 - Possible to have different largest possible groups...
- The (different) functions that result from the groupings below are logically equivalent

- Real circuits don't always need to have an output defined for every possible input
 - Example: Calculator displays have 7-segment LEDs. These LEDs can display 2⁷-1 patterns, but only ten of them are useful
- If a circuit is designed so that a particular set of inputs can never happen, we call this set of inputs a don't care condition
 - Helpful for Kmap circuit simplification

- Represent a don't care condition with an X
- Free to include or ignore the X's when choosing groups

■ Grouping option #1:

$$F(W,X,Y,Z) = \overline{W}\overline{X} + YZ$$

☞ Grouping option #2:

$$F(W,X,Y,Z) = \overline{W}Z + YZ$$

The truth table of

$$F(W, X, Y, Z) = \overline{W}\overline{X} + YZ$$

differs from the truth table of

$$F(W, X, Y, Z) = \overline{W}Z + YZ$$

- However, the values for which they differ are the inputs for which we have don't care conditions
 - Either is an acceptable solution