

# Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

# Digital Logic Combinational Circuits

#### Homework Notes

#### Homework 5 and 6

Paper submissions accepted for these assignments (since it involves drawing circuits and Karnaugh Maps...)

# Implementing Boolean Functions

How do we physically implement Boolean functions?

$$F(X,Y,Z) = (X+Y)(X+\overline{Y})(X\overline{Z})$$

- Using digital computer circuits called gates
- What is a gate?
  - Electronic device that produces a result based on two or more input values
  - Built out of 1-6 transistors (but we'll treat a gate as a single fundamental unit in this class)
- Integrated circuits contain gates organized to accomplish a specific task

# Gates: AND, OR, NOT

#### **AND Gate**



**OR Gate** 









X AND Y

| X | Y | XY |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

| X | Y | X+Y |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

| Х | $\overline{X}$ |
|---|----------------|
| 0 | 1              |
| 1 | 0              |

Look at the NOT gate: The O symbol represents "NOT". You'll see it on other gates

#### Gates: XOR

#### Exclusive OR (XOR)

X XOR Y

| x | Y | $X \oplus Y$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 1            |
| 1 | 0 | 1            |
| 1 | 1 | 0            |

 $X \longrightarrow X \oplus X$ 

- The output of the XOR operation is **true** only when the values of the **inputs are different**
- Note the special symbol ⊕ for the XOR operation.

# Gates: NAND, NOR

#### NAND (AND w/NOT)

AND with NOT afterwards

x NAND Y

| X | Y | X NAND Y |
|---|---|----------|
| 0 | 0 | 1        |
| 0 | 1 | 1        |
| 1 | 0 | 1        |
| 1 | 1 | 0        |
|   |   |          |

#### NOR (OR w/NOT)

OR with NOT afterwards

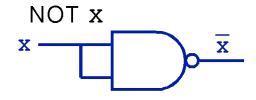
x NOR Y

| X | Y | X NOR Y |
|---|---|---------|
| 0 | 0 | 1       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 0       |
|   |   |         |

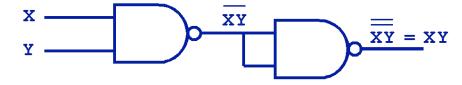
## **Universal Gates**

- Why bother with NAND and NOR?
  - Don't they make our life more difficult compared to the obvious AND, OR, NOT?
- NAND and NOR are universal gates
  - Easy to manufacture
  - Any Boolean function can be constructed out of only NAND or only NOR gates

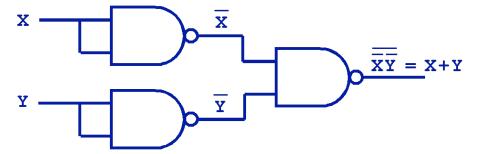
#### **Example using only NAND gates:**



x AND y

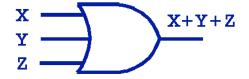


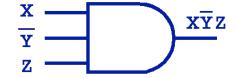
X OR Y

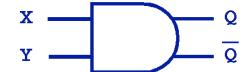


# Multiple Input / Multiple Output

- We can physically build many variations of these basic gates
  - Gates with many inputs? Yes!
  - Gates with many outputs? Yes!
    - Second output might be for the complement of the operation







# Combining Gates

Boolean functions can be implemented by combining many gates together

$$F(X,Y,Z) = X + \overline{Y}Z$$

$$X = X + \overline{Y}Z$$

$$Y = \overline{Y}Z$$

- Why did we simplify our Boolean expressions previously?
  - So we can build simpler circuits with fewer gates!

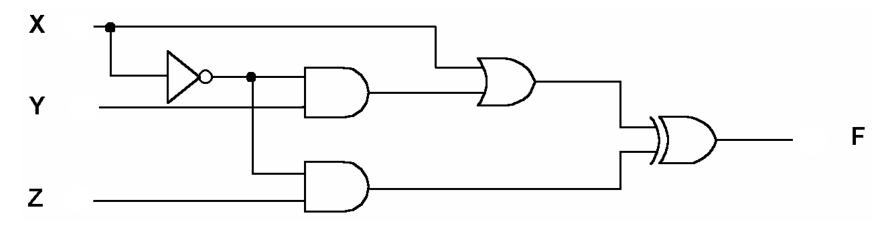
## **Combinational Circuits**



## **Combinational Circuits**

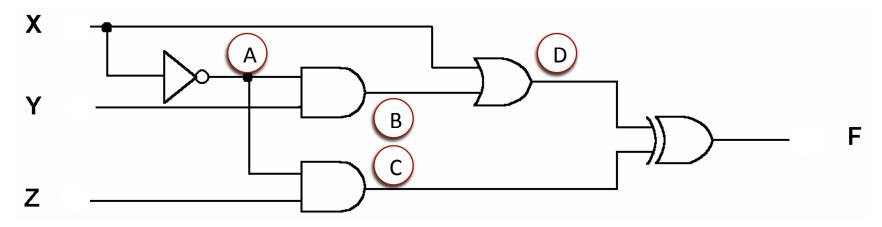
- Two general classifications of circuits
  - Combinational logic circuits
  - Sequential logic circuits
- Combinational logic circuits
  - Produce a specified output (almost) at the instant when input values are applied
  - Also known as: "Combinatorial circuits"
- Sequential logic circuits
  - **↗** Incorporate delay/"memory" elements
  - Will discuss later

## Combinational Circuit



In teams of 2, write the truth table for this circuit

# Combinational Circuit



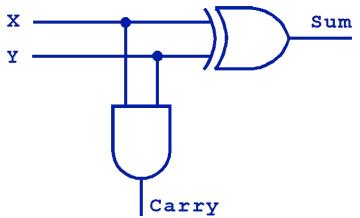
| x | у | z | Α | В | С | D | F(x,y,z) |
|---|---|---|---|---|---|---|----------|
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0        |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1        |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1        |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0        |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1        |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1        |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1        |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1        |

## Combinational Circuit – Half Adder

- Half Adder
  - **7** Finds the sum of two bits
- How can I implement the truth table?
  - **>** Sum =  $x \oplus y$  (XOR)
  - 7 Carry = x AND y

Inputs Outputs

| x | Y | Sum | Carry |
|---|---|-----|-------|
| 0 | 0 | 0   | 0     |
| 0 | 1 | 1   | 0     |
| 1 | 0 | 1   | 0     |
| 1 | 1 | 0   | 1     |



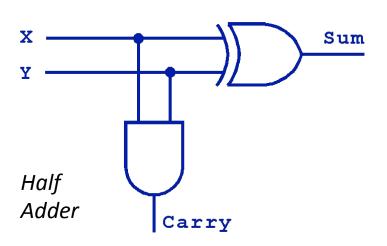
## Combinational Circuit – Full Adder

A full adder is a half adder plus the ability to process a carry-input bit

| •      | Inputs |             | Outp | Julis        |
|--------|--------|-------------|------|--------------|
| X      | Y      | Carry<br>In | Sum  | Carry<br>Out |
| 0      | 0      | 0           | 0    | 0            |
| 0      | 0      | 1           | 1    | 0            |
| 0      | 1      | 0           | 1    | 0            |
| 0      | 1      | 1           | 0    | 1            |
| 1      | 0      | 0           | 1    | 0            |
| 1      | 0      | 1           | 0    | 1            |
| 1      | 1      | 0           | 0    | 1            |
| 1      | 1      | 1           | 1    | 1            |
|        |        |             |      |              |
| lew ir | nput:  |             |      |              |

## Combinational Circuit – Full Adder

What do we need to add to the half adder (shown below) to make it a full adder?

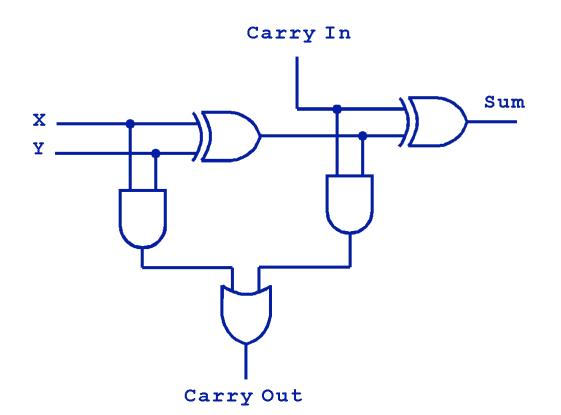


| Inputs | Outputs |
|--------|---------|
|--------|---------|

| x | Y | Carry<br>In | Sum | Carry<br>Out |
|---|---|-------------|-----|--------------|
| 0 | 0 | 0           | 0   | 0            |
| 0 | 0 | 1           | 1   | 0            |
| 0 | 1 | 0           | 1   | 0            |
| 0 | 1 | 1           | 0   | 1            |
| 1 | 0 | 0           | 1   | 0            |
| 1 | 0 | 1           | 0   | 1            |
| 1 | 1 | 0           | 0   | 1            |
| 1 | 1 | 1           | 1   | 1            |

## Combinational Circuit – Full Adder

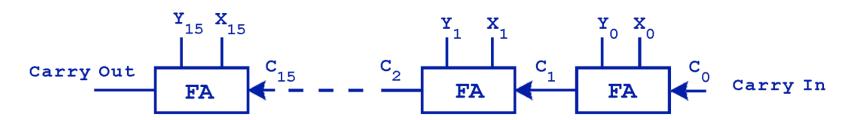
#### A Full Adder is really just two Half Adders in series



|                            | Inputs                     |                            | Outr                       | outs                       |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| x                          | Y                          | Carry<br>In                | Sum                        | Carry<br>Out               |
| 0<br>0<br>0<br>0<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0 | 0<br>1<br>0<br>1<br>0<br>1 | 0<br>1<br>1<br>0<br>1<br>0 | 0<br>0<br>0<br>1<br>0<br>1 |
| 1                          | 1                          | 1                          | 1                          | 1                          |

# Ripple Carry Adder

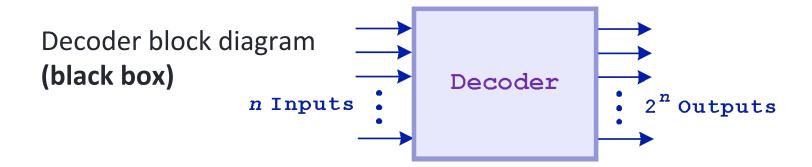
- Full adders can be connected in series to form a ripple carry adder
  - The carry bit "ripples" from one adder to the next



- Why is the performance of this approach <u>slow</u>?
  - Slow due to long propagation paths
  - Modern systems use more efficient adders

#### Combinational Circuit – Decoder

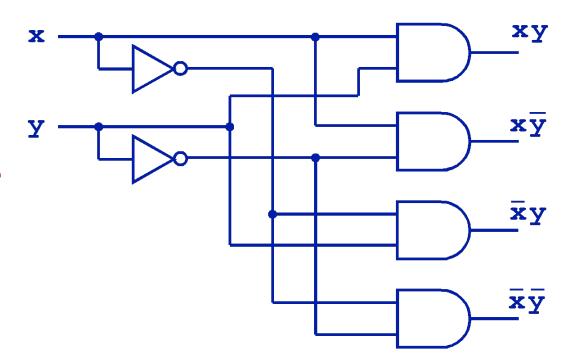
Selects one (of many) outputs from a single input



## Combinational Circuit – Decoder

Implementation of a 2 input to 4 output decoder

If x = 0 and y = 1, which output line is enabled?



# Memory

- Common decoder application: Memory address decoders
  - n inputs can select any of 2<sup>n</sup> locations.
- Example: Suppose we build a memory that stores2048 bytes using several 64x4 RAM chips
  - How do we determine which RAM chip to use when reading/writing a particular address?

# Memory

#### **Build this:**

Full Memory 2048 total bytes

(or  $2048 = 2^{11}$  addresses, 1 byte per address)



Data wires (8)



Address wires (11)

With many of these:

64x4 RAM Chip 64 (or 2<sup>6</sup>) locations 4 bits per location



Data wires (4)



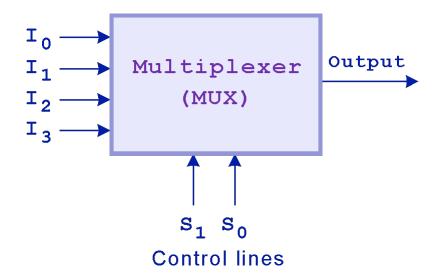
Address wires (6)

# Memory

- To get 2048 total addresses, we need 2048/64 = **32 banks** of RAM chips
- To make each address contains one byte (8 bits) we must access 8/4 = 2 chips in parallel
  - **₹** Therefore, a total of 32\*2 = **64 RAM chips**
  - Picture an array of RAM chips
    - **32** rows
    - 2 columns
- To determine which of 32 possible banks to read data from, a 5-to-32 decoder is needed ( $2^5 = 32$ )

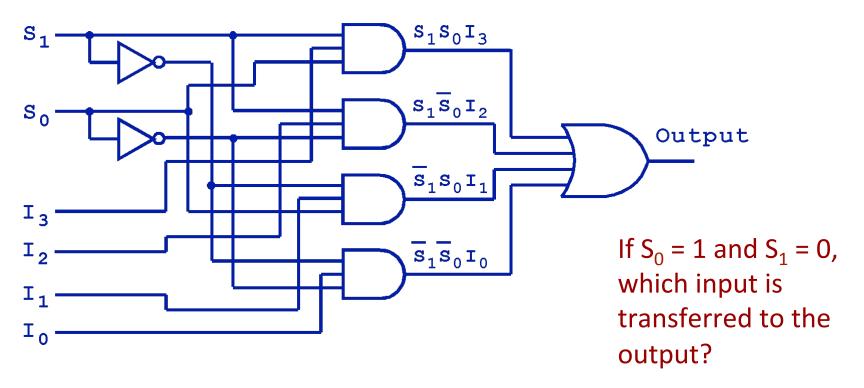
# Combinational Circuit – Multiplexer

- A multiplexer selects a single output from several inputs
- Which input is chosen?
  - Selected by the value on the multiplexer's control lines
- To select from n inputs, log<sub>2</sub>n control lines are needed.



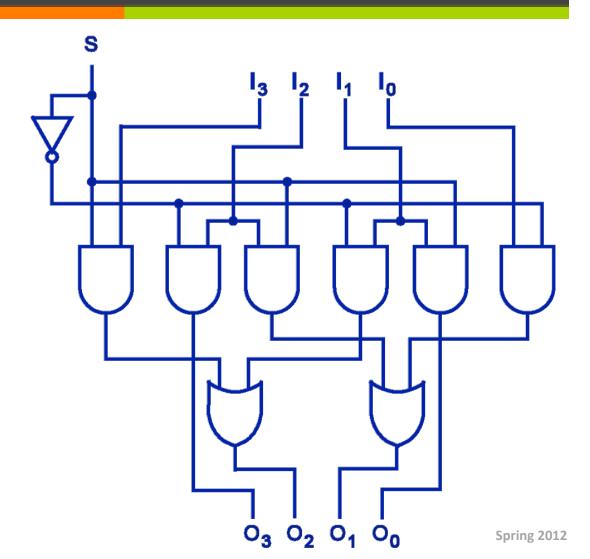
# Combinational Circuit – Multiplexer

▼ Implementation of a 4-to-1 multiplexer



## Combinational Circuit – Shifter

- This shifter moves the bits of a 4-bit input one position to the left or right
- If S = 0, in which direction do the input bits shift?
  - Left!



#### **Combinational Circuits**

- Does the output of a combinational circuit change instantly when the input changes?
  - No − takes a tiny (but measurable) length of time
  - Electrical signals in a wire have a finite speed
  - A transistor takes a finite time to change state