.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Boolean Algebra

Homework #3 Review — 2.33(a)

Convert 12.5 to IEEE 754 single precision floating point:

Format requirements for single precision (32 bit total length):

7 1 sign bit

2 8 bit exponent (which uses a bias of 127)

? 23 bit significant (which has an implied 1. that is not stored in the field)

Convert 12.5 to binary: 1100.1 x 2°
? Normalize it in the IEEE way: 1.1001 x 23
. Bias exponent: 3 + 127 = 130 (10000010 in binary)

Result
7 Sign bit: 0
? Exponent (8 bits): 10000010

? Mantissa (23 bits): 10010000000000000000000
(padded out to 23 bits, leading 1 not shown!)

? Thus, 0 | 10000010 | 10010000000000000000000

Objectives

Chapter 3 in textbook

Understand the relationship between Boolean logic
and digital computer circuits

Design simple logic circuits

Understand how simple digital circuits are
combined to form complex computer systems

Essential concepts only — There’s a whole course
(ECPE 71) devoted to this topic!

How many people are in ECPE 71 (Digital Design)
this semester?

How many people have taken ECPE 71 in past
semesters?

Origin of Boolean Algebra

“The Laws of Thought” written by George Boole in
1854

72 Invented symbol or Boolean logic

? Goal: Represent logical thought through
mathematical equations

Computers today essentially implement Boole’s
Laws of Thought

? Early computer pioneers (John Atanasoff and Claude
Shannon) were among the first to see this
connection

Boolean Algebra

Boolean algebra is a mathematical system for the
manipulation of variables that can have one of two
values

2 Formal logic:
Values of “true” and “false”

? Digital systems:
Values of “on”/“off”, 1/ 0, “high”/ “low”

Boolean expressions are created by performing
operations on Boolean variables

#” Common Boolean operators: AND, OR, NOT

7

AND Truth Table

Truth Table: shows all possible inputs and outputs

X y

0 0 0
0 1 0
1 0 0
1 1 1

AND: Referred to as “Boolean Product”

Xy

8

OR Truth Table

X+y

= = O O X
= O = O K
= = = O

OR: Referred to as “Boolean Sum”

9

NOT Truth Table

[Overbar symbol means “not”
X

Boolean Algebra

A Boolean function has:

2 At least one Boolean variable,

? At least one Boolean operator, and
7 At least one input from the set {0,1}

It produces an output that is also a member of the
set {0,1}

Boolean Algebra

Example truth table for function F(x,V,2z) = Xz+y
F(X,y,Z) _ x2+y X vy z Z Xz Xz+y

O 0O O 1 0 0
O 0 1 0 0 0
O 1 O 1 0 1
The shaded column in the middle 0O 1 1 0O O 1
is optional 1 0 O 1 1 1
. 1 0 1 0 0 0
. Ma!<e evaluation of subparts 1 1 0 1 1 L
easier I 1 1 A 1
Function Inputs — 4 T 0

“Show your work”
Function Output

Order of Operations

High to low priority F(x,V,2z) = Xz+y
2 NOT operator

X y z Z XZ XzZ+y
72 AND operator

O 0O O 1 0 0
2 OR operator o 0 1 0 0 0

O 1 O 1 0 1
This is how we chose the 0o 1 1 0O O 1
(shaded) function subparts 1 0 O 1 1 1
in our table. 1 0 1 c O 0

1 1 O 1 1 1

1 1 1 0 0 1

Simplification

Digital computers implement Boolean functions in
hardware

The simpler the Boolean function, the smaller the circuit
that implements it

What advantages do we get from a smaller circuit?
2 Simpler circuits are cheaper to build

#2 Smaller circuits consume less power

?2 Smaller circuits run faster than complex circuits

Goal: reduce Boolean functions to their simplest form!

Boolean Identities

ldentities can help simplify Boolean functions

2 Most identities have two forms:
AND (product) form, OR (sum) form
2 These identities are intuitive:
Identity AND OR
Name Form Form
Identity Law 1x=x 0O +x=x
Null Law Ox = l1+x=1

Idempotent Law | xx = x X+x=Xx
Inverse Law xx =0 x+x=1

More Boolean Identities

Are these familiar from algebra?

Identity AND OR
Name Form Form
Commutative Law Xy = y¥X X+y = y+Xx
Associative Law (xy)z=x(yz) (x+y)+z=x+ (y+2z2)
Distributive Law xX+yz = (x+y) (x+z) | x(y+z) = xy+x=z

Even More Boolean Identities

Familiar from a formal logic class?

These are very useful!

Identity AND OR
Name Form Form
Absorption Law X(x+y)=x X+ Xy =X
DeMorgan's Law (xy) =x+¥y (x+y) = Xy
Double —
Complement Law (x) =x

DeMorgan’s Law

Sometimes it is more economical to build a circuit
using the complement of a function (and
complementing its result) than it is to implement
the function directly

DeMorgan’s law makes finding the complement
easy:

(xy) = X + ;r and (x+y) = ;c]_[

DeMorgan’s Law

Easy to extend DeMorgan’s law to any number of
variables with a 2-step process

1. Replace each variable by its complement
2. Change all ANDs to ORs and ORs to ANDs

Example: F(X.,Y,Z)=(XY)+(XZ)+(YZ)

F(X,Y,Z)= (XY)+(XZ)+(YZ)

(XY)(XZ)(YZ)
(X+Y)(X+Z)(Y+2Z)

19

Boolean Algebra

Example: Use Boolean identities to simplify

F(X,Y,7)=(X+Y) (X+Y) (XZ)

Boolean Algebra

Simplified: F (X, Y, Z) = (X+Y) (X+Y) (XZ)

(X + YY) (X + ¥) (X2)

(X + ¥Y) (X+§) (§+Z) DeMorgan' s Law
Double complement Law
(XX + XY + ¥X + Y?) (§ + Z) Distributive Law

((X + Y?) i XN + ?)) (§ + Z)| Commutative and Distributive Laws

((X + 0) +X(1))(§+Z) Inverse Law
X (§ + Z) Idempotent and Identity Laws
XX + XZ Distributive Law
0 + XZ Inverse Law

XZ Identity Law

21

Boolean Algebra

Simplify

F(x,y)=x(x+y)+(y+x)(x+y)

Canonical Forms

Numerous ways to state the same Boolean
expression

72 “Synonymous” forms are logically equivalent (have
identical truth tables)

Challenge: Confusing!

Solution: Designers express Boolean functions in
standardized or canonical form

? Simplifies construction of circuit

Canonical Forms

There are two canonical forms for Boolean
expressions: sum-of-products and product-of-sums

? Boolean product is the AND operation
#” Boolean sum is the OR operation.

In the sum-of-products form, ANDed variables are
ORed together

F(x,v,2)= Xy + Xz + yzZ

In the product-of-sums form, ORed variables are
ANDed together:

F(x,v,2z)=(xt+y) (x+z) (y+2z)

Canonical Forms

Sum-of-Products form: Easy to F(x,y,z) = xz+y

read off of a truth table

X Yy z XZ+y
Look for lines where the function O 0 O 0
is true (=1). O 0 1 0
? List the input values o 1 0 1
_ O 1 1 1

?” OR each group of variables

together 1 00 1
& 1 0 1 0
1 1 O 1
1 1 1 1

Canonical Forms

Sum-of-Products form F(x,y,z) = xz+y

X Yy z XZ+y
F(x,y,z)=(xyz)+(xyz) + (xyz) 0 0 O 0
— O O 1 0]
+ (xyz) + (xy2z) o 1 0 .
O 1 1 1
This is not in simplest terms, 1 00 1
but it js in canonical sum-of-products form 1 01 0
1 1 O 1
1 1 1 1

