

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Boolean Algebra

Homework #3 Review – 2.33(a)

- Convert 12.5 to IEEE 754 single precision floating point:
- Format requirements for single precision (32 bit total length):
 - 1 sign bit
 - 8 bit exponent (which uses a bias of 127)
 - **2**3 bit significant (which has an **implied 1. that is not stored in the field**)
- Convert 12.5 to binary: 1100.1 x 2⁰
 - Normalize it in the IEEE way: 1.1001 x 2³
 - **Bias exponent: 3 + 127 = 130 (10000010 in binary)**
- Result
 - **♂** Sign bit: 0
 - **Exponent (8 bits): 10000010**

Objectives

- **Chapter 3** in textbook
- Understand the relationship between Boolean logic and digital computer circuits
- Design simple logic circuits
- Understand how simple digital circuits are combined to form complex computer systems
- **Essential concepts only** There's a whole course (ECPE 71) devoted to this topic!

Survey

- How many people are in ECPE 71 (Digital Design) this semester?
- How many people have taken ECPE 71 in past semesters?

Origin of Boolean Algebra

- "The Laws of Thought" written by George **Boole** in 1854
 - Invented symbol or Boolean logic
 - Goal: Represent logical thought through mathematical equations
- Computers today essentially implement Boole's Laws of Thought
 - Early computer pioneers (John Atanasoff and Claude Shannon) were among the first to see this connection

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values
 - Formal logic:
 - ▼ Values of "true" and "false"
 - Digital systems:
 - ✓ Values of "on"/"off", 1 / 0, "high"/ "low"
- **Boolean expressions** are created by performing operations on Boolean variables
 - Common Boolean operators: AND, OR, NOT

AND Truth Table

Truth Table: shows all possible inputs and outputs

x	y	xy
0	0	0
0	1	0
1	0	0
1	1	1

AND: Referred to as "Boolean **Product**"

OR Truth Table

x	y	x+y
0	0	0
0	1	1
1	0	1
1	1	1

OR: Referred to as "Boolean Sum"

NOT Truth Table

- A Boolean function has:
 - At least one Boolean variable,
 - At least one Boolean operator, and
 - At least one input from the set {0,1}
- It produces an output that is also a member of the set {0,1}

Example truth table for function

$$F(x,y,z) = x\overline{z} + y$$

- The shaded column in the middle is optional
 - Make evaluation of subparts easier

$$F(x,y,z) = x\overline{z} + y$$

x	У	z	z	хĪ	xz+y
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

Function Inputs
"Show your work"
Function Output

Order of Operations

- High to low priority
 - NOT operator
 - AND operator
 - OR operator
- This is how we chose the (shaded) function subparts in our table.

$$F(x,y,z) = x\overline{z} + y$$

3	K	У	z	Z	хĪ	x z +y
()	0	0	1	0	0
()	0	1	0	0	0
()	1	0	1	0	1
()	1	1	0	0	1
:	L	0	0	1	1	1
:	L	0	1	0	0	0
	L	1	0	1	1	1
	L	1	1	0	0	1

Simplification

- Digital computers implement Boolean functions in hardware
- The simpler the Boolean function, the smaller the circuit that implements it
- What advantages do we get from a smaller circuit?
 - Simpler circuits are cheaper to build
 - Smaller circuits consume less power
 - Smaller circuits run faster than complex circuits
- Goal: reduce Boolean functions to their simplest form!

Boolean Identities

- Identities can help simplify Boolean functions
 - Most identities have two forms:
 AND (product) form, OR (sum) form
 - These identities are intuitive:

Identity	AND	OR
Name	Form	Form
Identity Law Null Law Idempotent Law Inverse Law	$1x = x$ $0x = 0$ $xx = x$ $x\overline{x} = 0$	$0 + x = x$ $1 + x = 1$ $x + x = x$ $x + \overline{x} = 1$

More Boolean Identities

Are these familiar from algebra?

Identity	AND	OR
Name	Form	Form
Commutative Law Associative Law Distributive Law	xy = yx $(xy) z = x (yz)$ $x+yz = (x+y) (x+z)$	x+y = y+x $(x+y)+z = x + (y+z)$ $x(y+z) = xy+xz$

Even More Boolean Identities

- Familiar from a formal logic class?
- These are very useful!

Identity Name	AND Form	OR Form
Absorption Law DeMorgan's Law	$x(x+y) = x$ $(\overline{xy}) = \overline{x} + \overline{y}$	$x + xy = x$ $\overline{(x+y)} = \overline{x}\overline{y}$
Double Complement Law	(<u>x</u>)	= x

DeMorgan's Law

- Sometimes it is more economical to build a circuit using the complement of a function (and complementing its result) than it is to implement the function directly
- DeMorgan's law makes finding the complement easy:

$$(\overline{xy}) = \overline{x} + \overline{y}$$
 and $(\overline{x+y}) = \overline{x}\overline{y}$

DeMorgan's Law

- Easy to extend DeMorgan's law to any number of variables with a 2-step process
 - 1. Replace each variable by its complement
 - 2. Change all ANDs to ORs and ORs to ANDs
- **Example:** $F(X,Y,Z) = (XY) + (\overline{X}Z) + (Y\overline{Z})$

$$\overline{F}(X,Y,Z) = \overline{(XY) + (\overline{X}Z) + (Y\overline{Z})}$$

$$= \overline{(XY)(\overline{XZ})(\overline{YZ})}$$

$$= (\overline{X} + \overline{Y})(X + \overline{Z})(\overline{Y} + Z)$$

Example: Use Boolean identities to simplify

$$F(X,Y,Z) = (X+Y)(X+\overline{Y})(X\overline{Z})$$

Simplified: $F(X, Y, Z) = (X+Y)(X+\overline{Y})(X\overline{Z})$

$$(X + Y) (X + \overline{Y}) (\overline{XZ})$$

$$(X + Y) (X + \overline{Y}) (\overline{X} + Z)$$

$$(XX + X\overline{Y} + YX + Y\overline{Y}) (\overline{X} + Z)$$

$$((X + Y\overline{Y}) + X(Y + \overline{Y})) (\overline{X} + Z)$$

$$((X + 0) + X(1)) (\overline{X} + Z)$$

$$X(\overline{X} + Z)$$

$$X\overline{X} + XZ$$

$$0 + XZ$$

$$XZ$$

DeMorgan's Law
Double complement Law
Distributive Law
Commutative and Distributive Laws
Inverse Law
Idempotent and Identity Laws
Distributive Law
Inverse Law
Inverse Law
Inverse Law
Inverse Law
Inverse Law

Simplify

$$F(x,y) = \overline{x}(x+y) + (y+x)(x+\overline{y})$$

- Numerous ways to state the same Boolean expression
 - "Synonymous" forms are logically equivalent (have identical truth tables)
- Challenge: Confusing!
- Solution: Designers express Boolean functions in standardized or canonical form
 - **➣** Simplifies construction of circuit

- There are two canonical forms for Boolean expressions: **sum-of-products** and **product-of-sums**
 - Boolean product is the AND operation
 - Boolean sum is the OR operation.
- In the sum-of-products form, ANDed variables are ORed together

$$F(x,y,z) = xy + xz + yz$$

In the product-of-sums form, ORed variables are ANDed together:

$$F(x, y, z) = (x+y)(x+z)(y+z)$$

- Sum-of-Products form: Easy to read off of a truth table
- Look for lines where the function is true (=1).
 - List the input values
 - OR each group of variables together

$$F(x,y,z) = x\overline{z}+y$$

x	У	z	xz+y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

尽 Sum-of-Products form

$$F(x,y,z) = (\overline{x}y\overline{z}) + (\overline{x}yz) + (\overline{x}y\overline{z}) + (xy\overline{z}) + (xy\overline{z})$$

This is *not* in simplest terms, but it *is* in canonical sum-of-products form

$$F(x,y,z) = x\overline{z} + y$$

x	У	z	xz+y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1