.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Floating-Point Numbers

Schedule

Today
? Finish up Floating-Point Numbers
7 Homework #3 assigned

Monday
?2 Character representation

72 Homework #2 due
72 Quiz#l

Wednesday

? Boolean Algebra / Logic
72 Homework #3 due

Quiz #1

Topics from Homework 1 and 2

Conversion between decimal and binary

2 Whole numbers and fractional numbers

Signed numbers

72 Sign-magnitude
2 1's complement
2 2'scomplement

Conversion between hexadecimal and binary

Quiz #1

Topics from introductory Basic computer operation

lectures 2 Von Neumann model

? Basicinstruction cycle
Fetch (from where?)
Decode (what?)

History of computers

2 Vacuum tubes versus
transistors?

. Execute
A Transistors versus
integrated circuits? 7 Key components
What is stored in
Moore’s Law memory?
2 What does it mean? What does the ALU do?

2 How far will it go?

Recap — Floating-Point Representation

“Simple Model”

14 bit long floating-point number:
2 Thesign field is 1 bit

? The exponent field is 5 bits

72 The significand field is 8 bits

Sign

| ‘Exponent l Significand \

Recap — Floating-Point Representation

Example: Express -26.625,, in the revised 14-bit floating-
point model

26.625,, = 11010.101, x 2°
Normalize =0.11010101 x 2~.

Use excess 16 biased exponent:
A 16+5=21,,(=10101,)

Also need a 1 in the sign bit (negative number)

Final value saved to memory:

1({10101 11010101

Biased Exponent —Why?

Why does the simplified model (and the real standard,
described next) use a biased exponent to store positive/

negative numbers, instead of two’s complement
numbers?

Only answer | could find:

72 It makes comparing two floating-point numbers faster,
even on integer hardware that doesn’t understand
floating-point fields

72 Most significant bit — sign bit

72 Next most significant group — Exponents, which are

perfectly arranged in ascending order, even for
“negative” exponents

Floating-Point Representation

Floating-point addition and subtraction are done
using methods analogous to how we perform
calculations using pencil and paper

The first thing that we do is express both operands
in the same exponential power, then add the
numbers, preserving the exponent in the sum

If the exponent requires adjustment, we do so at
the end of the calculation

Floating-Point Representation

Example: Find 12, + 1.25,, using the 14-bit simple
floating-point model

12,,=0.1100 x 2
1.25,, = 0.101 x 2* = 0.000101 x 2*

0O([10100 11000000

+ 0/10100 | 00010100
e Thus, the sum is

0.110101 x 2°

O([10100 11010100

Floating-Point Representation

Floating-point multiplication is also carried out in a
manner akin to how we perform multiplication

using pencil and paper.
72 Multiply the two significands
72 Add their exponents

If the exponent requires adjustment, do so at the
end of the calculation

11

.

The Real Floating-Point Model

Computer Systems and Networks Spring 2012

IEEE Floating-Point Representation

The IEEE has established standards for floating-point
numbers

IEEE-754 single precision standard (32 bits long)
? 8-bit exponent (with a bias of 127)

72 23-bit significand

72 A“float” in C++

IEEE-754 double precision standard (64 bits long)
72 11-bit exponent (with a bias of 1023)

72 52-bit significand

2 A“double” in C++

IEEE Floating-Point Representation

72 Watch out! Significand is normalized differently

72 Implied 1 to the left of the radix point, i.e.
formatted as 1.xXXxXxxxx...

? Forexample, 4.5 =.1001 x 23
In IEEE format, use 4.5 = 1.001 x 22

2 The 1isimplied, which means it is not saved in
computer memory

71 The stored significand would include only 001

71 Optimization — This saves one entire bit!

Computer Systems and Networks Spring 2012

IEEE Floating-Point Representation

Example: Express -3.75 as a floating point number using
|IEEE single precision.

Normalize according to IEEE rules:

A -375=-11.11,=-1.111x 2%

72 The bias for single precision is 127, so add 127 + 1 =128
This is the exponent saved to computer memory

2 The first 1 in the significand is implied, so we have:

i1 0 0 0 00 00)]1211000O0O0O0ODO0OO0ODO0OO0OTO0OOGOODDOTDOOQOSOTODODTDOTDO

To decode saved number with the implied 1 in the
(implied 1. significand:

not saved) -(1).111, x 2128127 = .1 111, x 21 = -11.11, = -3.75.

IEEE Floating-Point Representation

Using the IEEE-754 single precision floating point
standard:

72 An exponent of 255 indicates a special value.
If the significand is zero, the value is =+ infinity.

If the significand is nonzero, the value is NaN, “not a
number,” often used to flag an error condition.

Using the double precision standard:
72 An exponent of 2047 indicates a special value

IEEE Floating-Point Representation

Both the 14-bit model that we have presented and
the IEEE-754 floating point standard allow two
representations for zero

2 Zeroisindicated by all zeros in the exponent and
the significand, but the sign bit can be either O or 1

Programmers should avoid testing a floating-point
value for equality to zero

? Negative zero does not equal positive zero

17

Floating-Point Errors

Computer Systems and Networks Spring 2012

Floating-Point Errors

No matter how many bits we use in a floating-point
representation, our model is finite

Problem: Real numbers can be infinite, so our
model can only approximate a real value

At some point, every model breaks down,
introducing errors into the calculations

By using a greater number of bits in the model, we
can reduce these errors, but we can never totally
eliminate them

Floating-Point Errors

Example: The 14-bit model cannot exactly
represent the decimal value 128.5

2 Inbinary, itis 9 bits wide: 10000000.1, = 128.5,,

72 But we only have an 8-bit significand!

Floating-Point Errors

How much error occurs when 128.5,, is
represented with the 14-bit model?

? True number: 128.5
72 Approximated number: 128
?A Error (percent difference)

128.5-128

~ 0.39%
128.5

Floating-Point Errors

If you wrote a loop that repetitively added 0.5 to
128.5 using 14-bit floating point, you would have an
error of nearly 2% after only four iterations

A The erroris less with “real” 32/64-bit floating point
standards, but still exists

Errors accumulate on real systems:

#include <stdlib.h>
#include <stdio.h>

int main ()
{

printf ("Floating-Point Demo Program\n") ;

double a = 0.0;
int 1i;

for (1=0; 1<1000000000; 1i++)
{

a=a + 0.1;

printf ("A=%1f\n", a); Actual output on test Linux machine:

return; Floating-Point Demo Program

} A=99999998.745418

23

This revised program doesn’t
accumulate errors as quickly:

a=1000000000*0.1;
printf ("A=%1f\n", a);

Actual output on test Linux machine:

A=100000000.000000

Computer Systems and Networks Spring 2012

24

Another Demo Program:

#include <stdlib.h>
#include <stdio.h>

int main ()
{

printf ("Floating-Point Demo Program 1\n");
double a, b;

a = (58.0/40.0-1.0);

b = (18.0/40.0); 7 What will be

printf ("A=%1f\n", a); the output of
printf ("B=%1f\n", Db); this program?

if (a==Db)
printf ("A equals B!\n");
else

printf ("A does not equal B!\n");

return;

}

Computer Systems and Networks Spring 2012

Floating-Point Errors

Actual program output:

jshafer@ecs-network:~/testing ecpel70$./test
Floating-Point Demo Program 1

A=0.450000
B=0.450000
A does not equal B!

T

Wait, why??

Floating-Point Errors

Digging deeper via C // Why aren't they equal?
hackery"_ // Let's dig into the contents of memory
uint6e4 t* ptr;

. . int64d t lue;
First get a pointerto "7 07" TYVALES

memory location A ptr = (uint64 t*)sa;
myvalue=*ptr;
Then copy the data printf ("A=0x%0161X in memory\n", myvalue);

at that location to a

. . t = into6d t*)&b;
new 64-bit variable ptr = (uint6d t%)

myvalue=*ptr;
o) printf ("B=0x%0161X in memory\n", myvalue);
Then print it out in

16 hex digits
72 16 hex = 64 bits

Floating-Point Errors

Contents of memory for floating-point variables a and b
(64-bits = 16 hex digits):

A=0x3FDCCCCCCCCCCCCC 1n memory
B=0x3FDCCCCCCCCCCCCD 1n memory
A

Foiled by the
Remember: llest of
C 21100 smallest o
D =1101 errors!

Floating-Point Errors

To test a floating point value for equality to some
other number, it is best to declare a “nearness to x”
epsilon value

Example: instead of checking to see if floating point
X is equal to 2 as follows:

2 if(x=2)then..

Do this instead:
? if (abs(x - 2) < epsilon) then ...
2 Must define epsilon to be small, but not too small!

Revised demo program:

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <math.h>

int main ()

{

29

printf ("Floating-Point Demo Program 2\n");

double a, b;

a = (58.0/40.0-1.0);
b = (18.0/40.0);

double epsilon = 1.0*pow(10,-9);
if (abs (a-b)<epsilon)

printf ("A equals B!\n");
else

printf ("A does not equal B!\n");

return;

}

Computer Systems and Networks

Actual output on test Linux
machine:

Floating-Point Demo
Program 2
A equals B!

Spring 2012

Floating-Point Errors

Because of truncated bits, you cannot always
assume that a particular floating point operation is
commutative or distributive

A (a+b)+c=a+(b+c) or

May not be true!!
2 a*(b+c)=ab+ac y

Floating-Point Errors

Floating-point overflow and underflow can cause
programs to crash

Overflow occurs when there is no room to store
the high-order bits resulting from a calculation

Underflow occurs when a value is too small to
store, possibly resulting in division by zero

Data Types

A N N N

Computer Systems and Networks

Where do | see all these data types in C/C++
programming?

int —Two’s Complement number
unsigned int - Plain old binary number
float — IEEE single precision floating-point

double — |IEEE double precision floating-point

Spring 2012

