ELEC / COMP 177 – Fall 2012

Computer Networking → Recap

Some slides from Kurose and Ross, Computer Networking, 5th Edition

Schedule

- No class next week
- Homework #5 Due Tuesday, Nov 13th
- Homework #6 Presentation on security/ privacy
 - Topic selection Due Tuesday, Nov 20th
 - Slides Due Monday, Nov 26th
 - Present! Tuesday, Nov 27th (and Thursday)
- Project #3 Due Tuesday, Dec 4th

Homework #6

- Looking for a change of pace...
- In-class oral presentations
 - Pick a single topic related to network <u>privacy</u> or <u>security</u>
 - Attacks? Defenses? Revolutionary new network designs?
 - Read about it and understand it
 - Present topic to your peers in this class
 - 4-6 slides, 8-9 minutes talking, 1 minute questions

Homework #6 Requirements

- Topic must be approved by instructor
 - Prevents overlap in topics
 - A quick email is fine
 - Due Tuesday, Nov 20th
- Slides must be uploaded to Sakai
 - I'll assemble them into a single file on my laptop
 - Due Monday, Nov 26th by midnight
 - PowerPoint or PDF please...
- Present! Tuesday, Nov 27th (and Thursday)

Project #3: Web Proxy

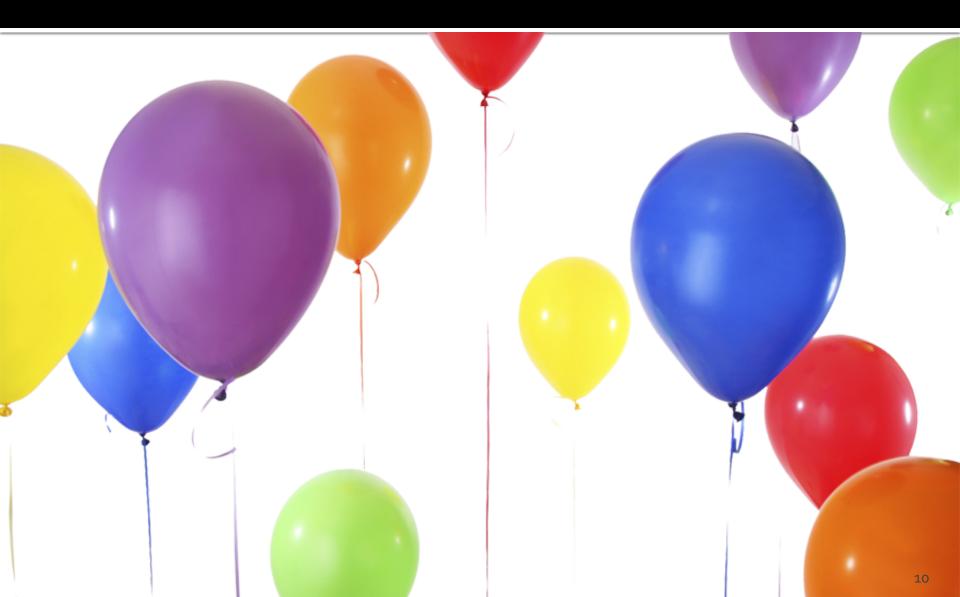
- Due: Tuesday, December 4th by 11:59pm
- What is a web proxy?
 - Makes HTTP requests on behalf of a client
- Why proxy?
 - Performance (from caching)
 - Content Filtering and Transformation
 - Block pages? (security)
 - Reformat pages? (for mobile devices)
 - Privacy harder to link HTTP request to a specific individual

Project #3 – Web Proxy

- Client (web browser) must be modified!
 - IP and port of proxy
 - Capabilities? HTTP/1.1, no pipelining
- Client sends out slightly different HTTP request
 - Without proxy:
 - GET /about HTTP/1.1
 Host: www.google.com
 - With proxy:
 - GET http://www.google.com/about HTTP/1.1
 Host: www.google.com
 - Now the proxy (redundantly) knows the destination server!

Project #3 – Web Proxy

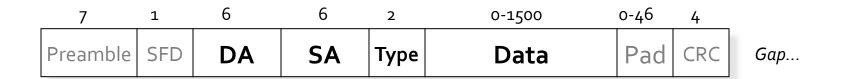
- 1. Proxy is running on server and listening on a port
- 2. User enters URL in browser and hits enter
- Client connects and sends modified HTTP request to proxy, not to destination server
- 4. Proxy decodes URL
- 5. Proxy opens connection to destination server
- 6. Proxy sends *normal* HTTP request for object
- 7. Proxy receives response from destination server
- 8. Proxy forwards full response to client (Headers and data!)
- Proxy closes connection to destination server and client


Project #3 – Web Proxy

 Tip – Use netcat when debugging to listen on a port and see what your client is sending

```
jshafer:~> netcat -l -p 4567 -v
listening on [any] 4567 ...
connect to [127.0.0.1] from localhost [127.0.0.1] 49711
GET http://www.opensuse.org/ HTTP/1.1
Host: www.opensuse.org
User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:
1.9.2.10) Gecko/20100914 SUSE/3.6.10-0.3.1 Firefox/3.6.10
Accept: text/html,application/xhtml+xml,application/
xml; q=0.9, */*; q=0.8
Accept-Language: en-us, en; q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1, utf-8; q=0.7, *; q=0.7
Connection: close
Proxy-Connection: close
```

Recap (Putting Things Together)


Congratulations!

Milestone

- Reached an important milestone in the last class
- Successfully sent a single IP packet across the global Internet
 - Now know all of the key protocols and standards necessary to accomplish that task
 - Let's review the semester to date...

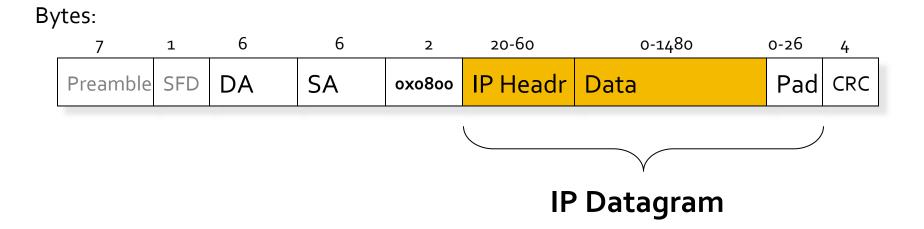
Recap – Ethernet Frame

- Destination MAC address
- Source MAC address
- Type (of encapsulated data)
- The data!
- Who assigns the source address?
 - Does it contain information on network location?
- If I just have an Ethernet frame, where can I send data to?

Recap – Ethernet Switch

- How does a switch learn the location of computers on the network? (what field)
- What is stored in the forwarding table?
 - MAC address, output port
- What happens if a switch has no match in its forwarding table?

Recap – Ethernet


- Why can't we use Ethernet for global communication?
 - Broadcasts to find location of computers too much bandwidth to do worldwide
 - Loops Ethernet uses spanning tree to prevent loops
 - Can't have a single "root" of the Internet!
 - Address contains no information about location on network
 - Would need to have a forwarding table with one entry for every PC on the Internet we want to communicate with
 - i.e. a single worldwide "phonebook" with no shortcuts!

Recap – IP Datagram

← 1 byte →		← 1 byte →	1 byte		1 byte	
Version	HdrLen	Type of Service	Total Length			
Identification			Flags	Fragment Offset		
Time-To-Live		Protocol	Heade	Header Checksum		
Source IP Address						
Destination IP Address						
Options and padding (optional)						
Payload						

Recap – IP Datagram

• Are IP packets separate from Ethernet frames?

Time-to-live field: what's it used for?

Recap – IP encapsulated in Ethernet

Destination MAC Address					
Destination MAC Address		Source MAC Address			
Source MAC Address					
Type (0x0800)		Version	HdrLen	Type of Service	
Total Length		Identification			
Flags	Fragment Offset	Time-To-Live		Protocol	
Header Checksum		Source IP Address			
Source IP Address		Destination IP Address			
Destination IP Address		Options and Padding			
Options and Padding		Payload			
Payload					
Ethernet CRC					

Recap – IP Datagram

- Where does the source IP address come from?
 - DHCP (possibly running on the router)
- Where does the destination IP address come from?
 - DNS can be used to translate a host name from the user (e.g. www.pacific.edu) into an IP address (e.g. 138.9.110.12)

Recap – IP Routers

- Ethernet switches forward packets based on destination MAC address
- What do routers forward packets based on?
 - Destination IP address
- What is in the router's forwarding table?
 - Prefixes, e.g. 138.16.9/24
 - Next hop IP + exit port
- What happens if more than one prefix matches the destination IP address?
 - Longest prefix match determines winner

Recap – Forwarding versus Routing

FORWARDING

- Move packets from router's input to appropriate router output
- Longest prefix match (LPM)

ROUTING

- Determine path (route) taken by packets from source to destination
- Routing algorithms such as RIP and OSPF

Example

- Send a single IP packet from Pacific to the main <u>Moscow State</u> <u>University</u> web server
- My IP:
 - **1**38.9.253.252
- MSU's IP:
 - 93.180.0.18

Traceroute

How does this actually work?

```
dhcp-10-6-162-134:~ shafer$ traceroute -q 1 www.msu.ru
traceroute to www.msu.ru (93.180.0.18), 64 hops max, 52 byte packets
 1 10.6.163.254 (10.6.163.254) 1.677 ms
   10.0.0.141 (10.0.0.141) 1.116 ms
   10.0.0.90 (10.0.0.90) 1.053 ms
   138.9.253.252 (138.9.253.252) 5.200 ms
   74.202.6.5 (74.202.6.5) 8.137 ms
   pao1-pr1-xe-1-2-0-0.us.twtelecom.net (66.192.242.70) 13.241 ms
   te-9-4.car1.sanjose2.level3.net (4.59.0.229) 92.772 ms
   vlan70.csw2.sanjose1.level3.net (4.69.152.126) 8.440 ms
   ae-71-71.ebr1.sanjose1.level3.net (4.69.153.5) 11.130 ms
   ae-2-2.ebr2.newyork1.level3.net (4.69.135.186) 80.992 ms
10
   ae-82-82.csw3.newyork1.level3.net (4.69.148.42) 77.316 ms
11
   ae-61-61.ebr1.newyork1.level3.net (4.69.134.65) 74.584 ms
12
   ae-41-41.ebr2.london1.level3.net (4.69.137.65) 147.127 ms
13
   ae-48-48.ebr2.amsterdam1.level3.net (4.69.143.81) 151.779 ms
14
   ae-1-100.ebr1.amsterdam1.level3.net (4.69.141.169) 152.848 ms
1.5
   ae-48-48.ebr2.dusseldorf1.level3.net (4.69.143.210) 156.349 ms
16
17
   4.69.200.174 (4.69.200.174) 168.386 ms
   ae-1-100.ebr1.berlin1.level3.net (4.69.148.205) 167.652 ms
18
19
   ae-4-9.bar1.stockholm1.level3.net (4.69.200.253) 192.668 ms
2.0
   213.242.110.198 (213.242.110.198) 176.501 ms
21
   b57-1-qw.spb.runnet.ru (194.85.40.129) 198.827 ms
   m9-1-qw.msk.runnet.ru (194.85.40.133) 204.276 ms
2.2
23
   msu.msk.runnet.ru (194.190.254.118) 202.454 ms
24
   93.180.0.158 (93.180.0.158) 201.358 ms
   93.180.0.170 (93.180.0.170) 200.257 ms
2.5
26 www.msu.ru (93.180.0.18) 204.045 ms !Z
```

Companies Handling Our Packet

Number	Name
1)	University of the Pacific
2)	Time Warner Telecom
3)	Level 3 Communications
4)	Runnet - State Institute of Information Technologies & Telecommunications (SIIT&T "Informika")
5)	Moscow State University

Assumptions

- Assume that I know
 - My own MAC address (hardwired on the NIC)
 - My own IP address (assigned via DHCP to be within my local subnet)
 - The subnet mask for my local network
 - The IP address of my gateway router leading "outside"
 - The IP address of MSU that I want to send a message to

What happens first?

- Compare destination IP with my IP and subnet mask
 - My IP: 138.9.110.104
 - My subnet mask: 255.255.255.0
 - Thus, my subnet is 138.9.110/24
- Destination IP of 93.180.0.18 is (way!) outside my LAN

- The destination is outside of my LAN. What happens next?
 - Need to send packet to gateway router
- What does the Ethernet/IP packet look like?
 - Destination MAC: ???
 - Source MAC: My MAC
 - Destination IP: MSU's IP
 - Source IP: My IP
 - TTL: 64 (a reasonable default)

- How do I get the MAC address of the router port attached to my LAN?
 - I know my gateway router's IP address
 - Use ARP (Address Resolution Protocol)
- Who receives my ARP request?
 - Everyone broadcast to all hosts on LAN
 - "Who has 138.16.110.1? Tell 138.9.110.104"
- Who replies to my ARP request?
 - Only the host (if any) with the requested IP address.
 This should be the router

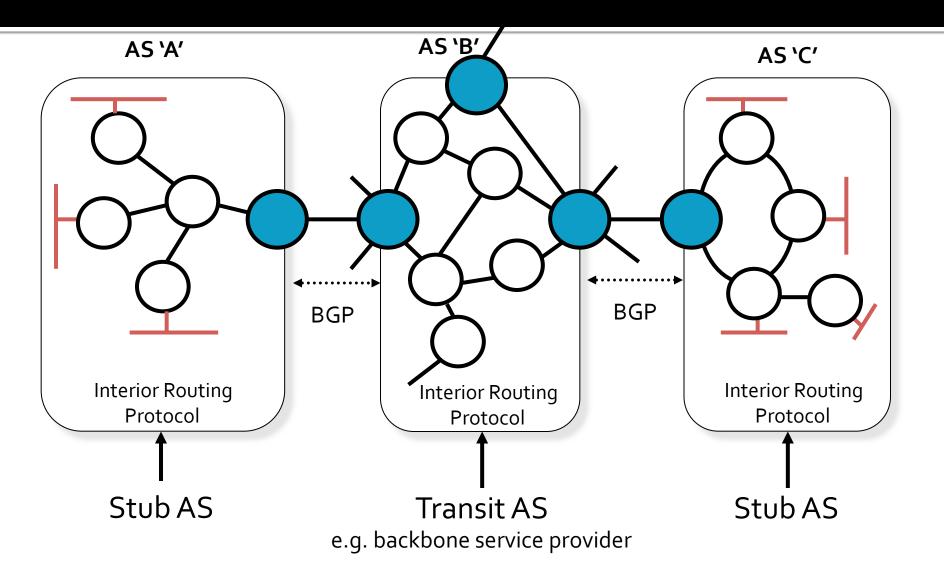
- Assume there is an Ethernet switch between you and the router
- What happens if the switch has seen the MAC address of the router before?
 - Packet is sent out only the port that faces the router
- What happens if the switch has not seen the MAC address before?
 - Packet is broadcast out all ports
- Switch always learns (or re-learns) from each packet

- The packet reaches your gateway router (first router between here and MSU)
- What does the router do?
 - Verify checksums
 - Longest prefix match on destination IP address
- What information is returned from router's forwarding table?
 - Next hop IP address
 - (of subsequent router, or final host)
 - Output port

- Assume the next hop is also connected to this router via Ethernet
- What do we need to know to send a message to this router?
 - Its MAC address
- How do we find this?
 - Router does ARP (just like hosts do ARP)

- How does the router modify the packet when retransmitting?
 - Destination MAC = change to be MAC of next hop
 - Source MAC = change to be MAC of this router
 - Destination IP = unchanged
 - Source IP = unchanged
 - TTL = decrement by 1
 - Checksum = recalculated

- This process of re-transmitting a packet repeats for many routers across the network
 - 26 in this example
- Eventually, however, the "next hop" in the forwarding table is the actual destination computer
 - Packet has arrived!
- Is that all the complexity in the Internet?
 - No forwarding tables in the router aren't created by magic!


Routing

- In addition to forwarding packets, routers are busy (asynchronously) calculating least-cost routes to destinations
 - Goal: Have the forwarding table ready by the time your packet arrives with a specific destination
- What happens if the forwarding table isn't ready, and there is no entry for your destination?
 - Packet is dropped you lose

Autonomous Systems

- What is an autonomous system?
 - Grouping of routers owned/administered by a single entity
- Can a company only have a single autonomous system?
 - No, can have multiple AS's
- Why might I have more than one?
 - Better routing for geography (i.e. North America versus Europe versus Asia)
 - Other reasons...

Autonomous Systems

Traceroute

```
dhcp-10-6-162-134:~ shafer$ traceroute -a -q 1 www.msu.ru
traceroute to www.msu.ru (93.180.0.18), 64 hops max, 52 byte packets
   [AS65534] 10.6.163.254 (10.6.163.254) 1.677 ms
   [AS1] 10.0.0.141 (10.0.0.141) 1.116 ms
   [AS1] 10.0.0.90 (10.0.0.90) 1.053 ms
   [ASO] 138.9.253.252 (138.9.253.252) 5.200 ms
   [AS0] 74.202.6.5 (74.202.6.5) 8.137 ms
   [AS4323] pao1-pr1-xe-1-2-0-0.us.twtelecom.net (66.192.242.70) 13.241 ms
    [AS3356] te-9-4.car1.sanjose2.level3.net (4.59.0.229) 92.772 ms
    [AS3356] vlan70.csw2.sanjose1.level3.net (4.69.152.126) 8.440 ms
    [AS3356] ae-71-71.ebr1.sanjose1.level3.net (4.69.153.5) 11.130 ms
    [AS3356] ae-2-2.ebr2.newyork1.level3.net (4.69.135.186) 80.992 ms
10
    [AS3356] ae-82-82.csw3.newyork1.level3.net (4.69.148.42) 77.316 ms
11
    [AS3356] ae-61-61.ebr1.newyork1.level3.net (4.69.134.65) 74.584 ms
12
    [AS3356] ae-41-41.ebr2.london1.level3.net (4.69.137.65) 147.127 ms
13
    [AS3356] ae-48-48.ebr2.amsterdam1.level3.net (4.69.143.81) 151.779 ms
14
   [AS3356] ae-1-100.ebr1.amsterdam1.level3.net (4.69.141.169) 152.848 ms
15
   [AS3356] ae-48-48.ebr2.dusseldorf1.level3.net (4.69.143.210) 156.349 ms
16
    [AS3356] 4.69.200.174 (4.69.200.174) 168.386 ms
17
18
    [AS3356] ae-1-100.ebr1.berlin1.level3.net (4.69.148.205) 167.652 ms
    [AS3356] ae-4-9.bar1.stockholm1.level3.net (4.69.200.253) 192.668 ms
19
20
    [AS3356] 213.242.110.198 (213.242.110.198) 176.501 ms
21
    [AS3267] b57-1-qw.spb.runnet.ru (194.85.40.129) 198.827 ms
    [AS3267] m9-1-gw.msk.runnet.ru (194.85.40.133) 204.276 ms
22
23
   [AS3267] msu.msk.runnet.ru (194.190.254.118) 202.454 ms
24
   [AS2848] 93.180.0.158 (93.180.0.158) 201.358 ms
2.5
   [AS2848] 93.180.0.170 (93.180.0.170) 200.257 ms
26
   [AS2848] www.msu.ru (93.180.0.18) 204.045 ms !Z
```

AS Numbers in Traceroute

AS	Name
O	Reserved (local use)
18663	University of the Pacific (Traceroute didn't resolve this due to missing information in address registry)
4323	Time Warner Telecom
3356	Level 3 Communications
3267	Runnet - State Institute of Information Technologies & Telecommunications (SIIT&T "Informika")
2848	Moscow State University

First AS

- First AS is Pacific's (AS18663)
- Do a lookup on the AS
 - http://www.ripe.net/data-tools/stats/ris/routinginformation-service
 - https://www.dan.me.uk/bgplookup
 - http://www.peeringdb.com/
 - Among other places...
- Pacific's gateway(s) to the Internet <u>advertise</u>
 a BGP prefix (aka subnet)
 - **138.9.0.0/16**

First AS

- An advertisement is a promise:
 - If you give me packets destined for IP addresses in this range, I will move them closer to their destination.
 - In this case, we αre the destination!
 - This advertisement originates from our AS

Second AS

- Pacific buys Internet service from Time Warner (AS4323), which has border routers that speak BGP
 - Pacific's routers talk to their routers, and they learn of our advertisement for 138.9.0.0/16
 - Now, Time Warner knows how to reach Pacific's IPs
 - We also learn of their advertisements!
 - Both for prefixes originating at those ISPs, and prefixes reachable through those ISPs

Announcements

- When Time Warner give our routers their BGP announcements, do we get lots of tiny entries like 138.9.0.0/16?
 - Maybe
 - But, routes can be aggregated together and expressed with smaller prefixes, e.g.

 Reduces communication time plus router CPU and memory requirements

Second AS (continued)

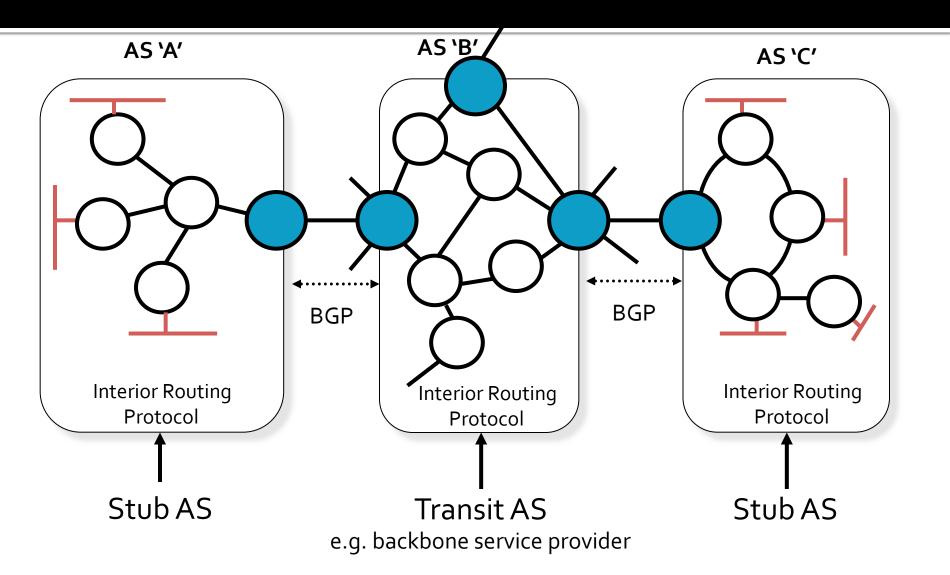
- Pacific had only 1 announcement
- Time Warner originates ~159 announcements (as of Nov 2012)
 - Some are large, e.g. 173.226.0.0/15
 - Some are small, e.g. 159.157.233.0/24
- Time Warner also provides transit to their downstream customers' prefixes, including Pacific's prefix
 - Total of ~6395 announcements (as of Nov 2012)
 - We get this full list, as does ever other (BGP-speaking)
 AS connected to Time Warner

Third AS

- Time Warner (AS4323) can move this packet to San Jose, where it enters the Equinix Internet Exchange (See https://www.peeringdb.com)
 - Private location to peer ("exchange traffic") with dozens of other companies
 - Akamai, Apple, Amazon, Facebook, Google, Microsoft, many ISPs, etc...
- Time Warner connects with Level 3 (AS3356)
 - Do they pay, or is this free?
 - Same sharing of BGP announcements occurs here

Last AS

- The same thing is happening over in Eurasia
- Last AS of our path is Moscow State University (AS2848)
- MSU's gateway(s) to the Internet <u>advertise</u> a BGP prefix for 93.180.0.0/18 (along with 3 others that *originate* in this AS)
 - That encompasses the destination IP of 93.180.0.18


Next-to-last AS

- Moscow State University connects to Runnet (AS3267)
 - Runnet announces prefix 93.180.0.0/18
 (along with 291 others reachable downstream, and 13 that originate in this AS)
 - Runnet now knows how to reach IPs that belong to MSU
- Runnet obtains transit through Level3, so our link is complete!

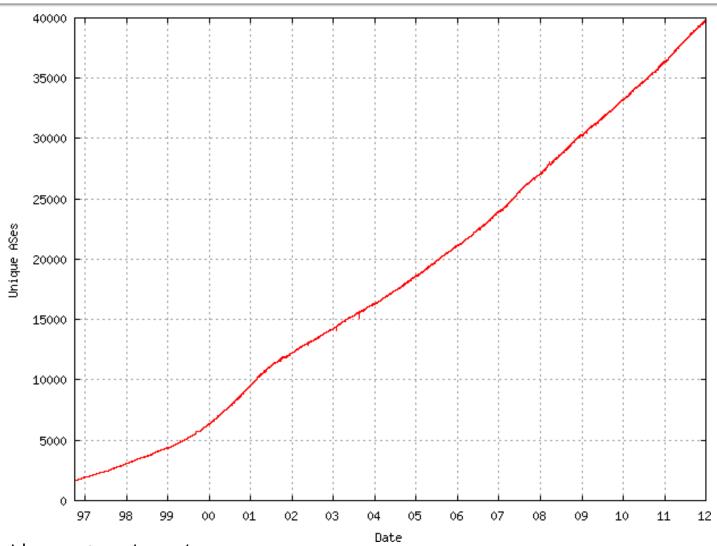
What's Missing?

- The forwarding table!
 - We keep forgetting to generate the forwarding table!
- Need more information
 - BGP tells us links <u>between</u> autonomous systems
 - Other protocols (RIP, OSPF) tell us paths within autonomous systems

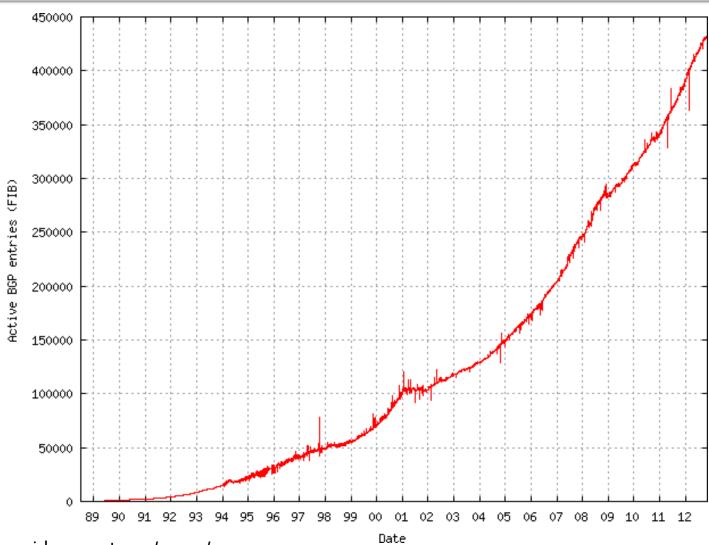
Autonomous Systems

Interior Routing Protocol

- Let's say (hypothetically) that Time Warner runs RIP, a distance-vector protocol
- Does each router have a complete view of the network inside the AS?
 - No
- What algorithm is used to develop routes?
 - Bellman-Ford (using distance vectors)


Interior Routing Protocol

- Let's say (hypothetically) that Time Warner runs OSPF, a link-state protocol
- Does each router have a complete view of the network inside the AS?
 - Yes
- What algorithm is used to develop routes?
 - Dijkstra's


End Result is the Same

- Each router inside the AS updates its own forwarding table to direct BGP prefixes to the appropriate gateway router to the next AS
 - Rules might be very simple, i.e. just forward everything not destined to this AS to the same gateway router
 - Or rules might be complicated...
- End result is a forwarding table for the router
 - Prefix (for LPM)
 - Next-hop IP
 - Exit port

Growth of Internet – AS's

Growth of InternetBGP Entries (prefixes)

Growth

- What does this growth mean for routers on the BGP-speaking Internet?
 - They need to grow too! (more memory, faster CPUs, etc...)

What Does My Computer Do?

- Does my computer speak BGP?
 - No your ISP's external gateway router does
- Does my computer speak RIP or OSPF?
 - No your ISP's internal routers do
- Does my computer speak ARP?
 - Yes
- Does my computer speak IP?
 - Yes
- Does my computer speak Ethernet?
 - Yes

Milestone

- Successfully sent a single IP packet across the global Internet
 - Now know all of the key protocols and standards necessary to accomplish that task
- Now can I waste time watching LOLcats?

Milestone

- Not quite. One IP packet by itself is not enough to transmit an entire image
- What else do we need?
 - Method to link multiple IP packets together and deliver them to the correct process on the receiver
 - Transport layer: UDP, TCP (TCP also provides reliability!)
 - Applications need to be written to use this reliable network communication, and they need protocols of their own!
 - Web = HTTP, Email = POP / IMAP / SMTP, ...