ELEC / COMP 177 – Fall 2012

Computer Networking → Routing Protocols (2)

Some slides from Kurose and Ross, Computer Networking, 5th Edition

Schedule

- Project #2 Due Tuesday, Nov 6th
- Homework #5 Due Tuesday, Nov 13th
- Later this semester:
 - Homework #6 Presentation on security/privacy
 - Topic selection Due Tuesday, Nov 20th
 - Slides Due Monday, Nov 26th
 - Present! Tuesday, Nov 27th (and Thursday)
 - Project #3 Due Tuesday, Dec 4th

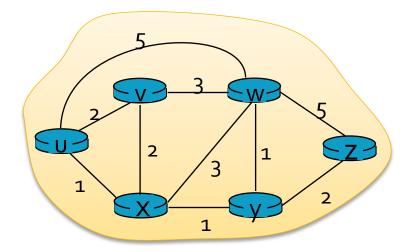
Recap – Forwarding versus Routing

- Forwarding
 - Move packets from router's input to appropriate router output
 - Router does a longest prefix match (LPM) on entries in the forwarding table to determine output port

- Routing
 - Determine path (route) taken by packets from source to destination
 - Routing algorithms

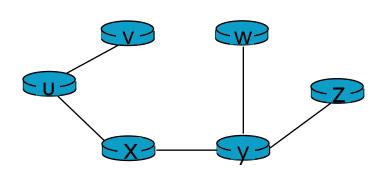
Recap – Routing Algorithm Classification

Global Information


- All routers have complete topology, link cost info
- "link state" algorithms

Decentralized

- Router knows physically-connected neighbors and link costs to neighbors
- Iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms


Recap – Link State – Dijkstra's Algorithm

- Network topology and link costs are known to all nodes
 - Accomplished via "link state broadcast"
 - All nodes have same info
- Computes least cost paths from one node (source) to all other nodes
 - Produces forwarding table for that node
- Iterative: after k iterations, know least cost path to k destinations

Recap – Link State – Dijkstra's Algorithm

Resulting shortest-path tree from u:

Resulting forwarding table in u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(U,X)

Recap – Distance Vector Algorithm

Iterative, asynchronous:

each local iteration caused by:

- local link cost change
- DV update message from neighbor

Distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

Each node:

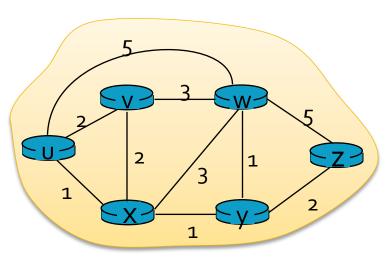
wait for (change in local link cost or msg from neighbor) recompute estimates if DV to any dest has changed, *notify* neighbors

Recap – Distance Vector – Bellman-Ford Equation

Define:

 $d_x(y) := cost of least-cost path from x to y$

Then:


Something I know...

Something my neighbor told me...

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

where min is taken over all neighbors v of x

Recap – Distance Vector – Bellman-Ford

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4 \text{ (by way of x!)}$$

The node that provides the minimum cost is entered in the router forwarding table as the next hop

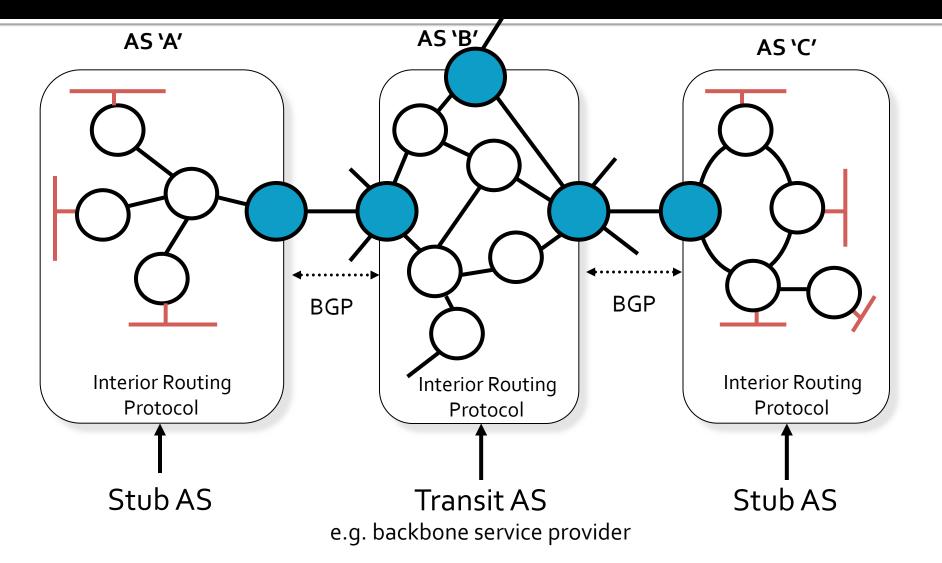
Today

- Continue discussing network layer
- Routing algorithms used in the Internet
 - Routing Information Protocol (RIP)
 - Open Shortest Path First (OSPF)
 - Border Gateway Protocol (BGP)

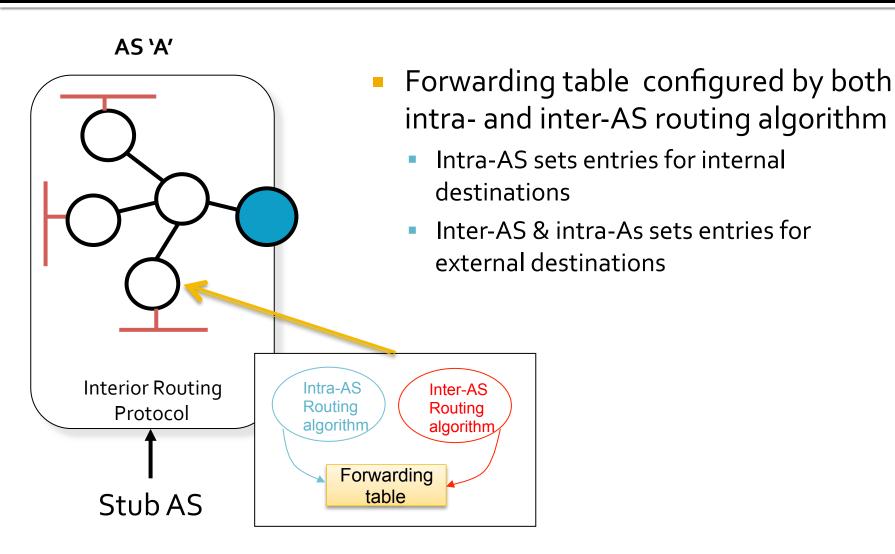
Recap – Hierarchical Routing

- Our routing discussion thus far has been idealized
 - All routers are identical
 - The network is "flat"
- This is not true in practice!
- Problem 1 Scale
 - Hundreds of millions of destinations:
 - Can't store all destinations in routing tables!
 - Routing table exchange would swamp links!
 - Distance-vector would never converge

- Problem 2 -Administrative autonomy
 - Internet = network of networks
 - Each network admin wants to control routing in his/her own network


Recap – Hierarchical Routing

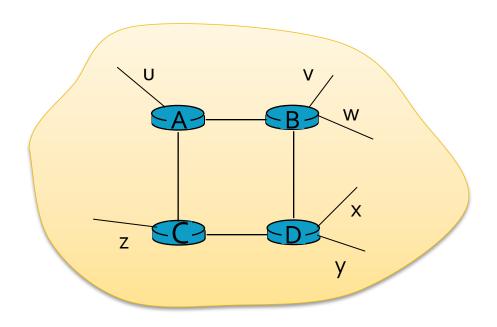
- Aggregate routers into regions (aka "autonomous systems" - AS)
- Routers inside autonomous system run same routing protocol
 - "Intra-AS" routing protocol
 - Routers in different AS can run different intra-AS routing protocol
- Border Router
 - Direct link to router in another AS


Routing in the Internet

- The Internet uses hierarchical routing
- The Internet is split into Autonomous Systems
 - "Independent" networks on the Internet
 - Typically owned/controlled by a single entity
 - Share a common routing policy
- Example autonomous systems
 - Pacific (18663), Exxon (1766), IBM (16807), Level3 (3356)
- Different routing protocols within and between autonomous systems
 - Interior gateway/routing protocol (e.g. OSPF)
 - Border gateway protocol (e.g. BGP)

Autonomous Systems

Forwarding Table

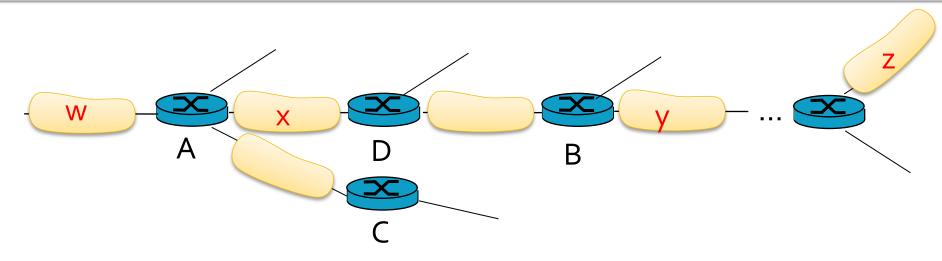

Intra-AS Routing

- Routing inside the autonomous system
- Also known as Interior Gateway Protocols (IGP)
- Most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Routing Information Protocol (RIP)

Routing Information Protocol (RIP)

- Distance vector algorithm
- Included in BSD-UNIX Distribution in 1982
- Distance metric: # of hops (max = 15 hops)

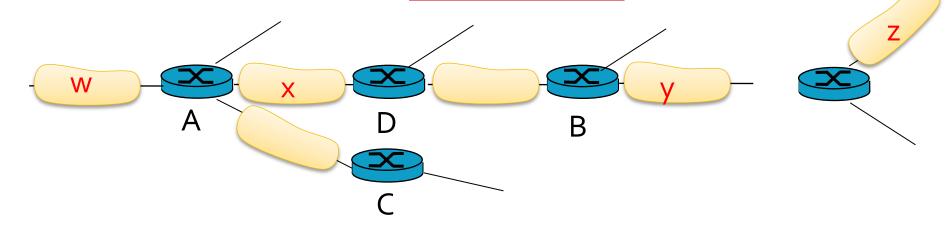

From router A to subnets:

<u>destination</u>	<u>hops</u>
U	1
V	2
W	2
×	3
У	3
Z	2

RIP advertisements

- Distance vectors
 - Exchanged among neighbors every 30 seconds via Response Message (also called advertisement)
- Each advertisement lists up to 25 destination subnets within AS

RIP: Example


Routing/Forwarding table in D:

Destination Network	Next Router	# of Hops to Destination
W	Α	2
У	В	2
Z	В	7
X		1

RIP: Example

Dest	Next	Hops
w		1
X		1
z	C	4

Advertisement from A to D

Routing/Forwarding table in D:

Destination Network	Next Router	# of Hops to Destination
W	Α	2
У	В	2
Z)B(A	5
X		1
		•••

RIP: Link Failure and Recovery

- If no advertisement heard after 180 sec, the neighbor/link declared dead
- Failure recovery
 - Routes via neighbor invalidated
 - New advertisements sent to neighbors
 - Neighbors in turn send out new advertisements (if tables changed)
 - Link failure info "quickly" propagates to entire net

Open Shortest Path First (OSPF)

Open Shortest Path First Routing

- Networks are partitioned into "areas"
 - OSPF only runs within a specific area
 - Other protocols (i.e., BGP) used to route outside an area
- Link-state algorithm
 - Each node has full topology map
 - Route computation using Dijkstra's algorithm

Open Shortest Path First Routing

- Routers periodically send "hello" and "link state" packets to their neighbors
 - Learn who your neighbors are dynamically
 - Decide link/router down if no more hellos
 - Announce changes to the topology
 - Broadcast throughout the area
 - Carried in OSPF messages directly over IP (rather than TCP or UDP)

Reliable Flooding of LSPs

- Link state packets (LSP) delivered throughout the area
 - Flooded throughout the area
 - Sequence numbers and TTLs
- Reliable Flooding
 - If newer sequence number, then forward packet over all links other than the ingress link, otherwise drop packet
 - Resend unacknowledged packets
- Link State Detection
 - If no hello packets during dead interval, assume link is down

OSPF Features (not in RIP)

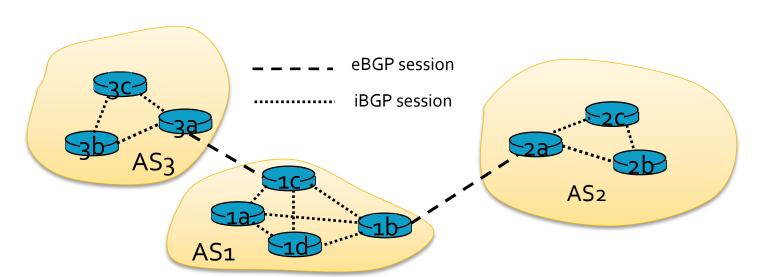
- Security: all OSPF messages authenticated
 - To prevent malicious intrusion
- Multiple same-cost paths allowed
 - Only one path in RIP
- For each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort; high for real time)
- Scalable to larger networks (can divide 1 large AS into multiple OSPF "areas")

Routing Across Borders

- Can we use OSPF Internet-wide?
- No! OSPF still has scalability limits
 - Broadcasts all link states to all routers
 - Consumes bandwidth
 - Calculates shortest path to all routers
 - Consumes router CPU time?
- Autonomous systems are independent
 - Run by different organizations
 - May use different link cost metrics

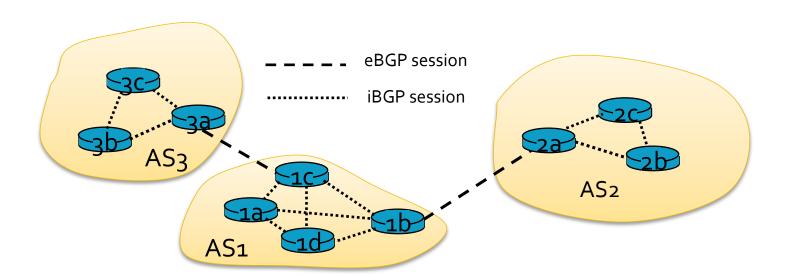
Routing Across Borders

- Need a "border gateway protocol"
 - Global routing protocol across autonomous systems
- Global connectivity is at stake!
 - Must settle on one protocol
- What are the requirements?
 - Scalability
 - Flexibility in choosing routes


Border Gateway Protocol (BGP)

Internet Inter-AS routing: BGP

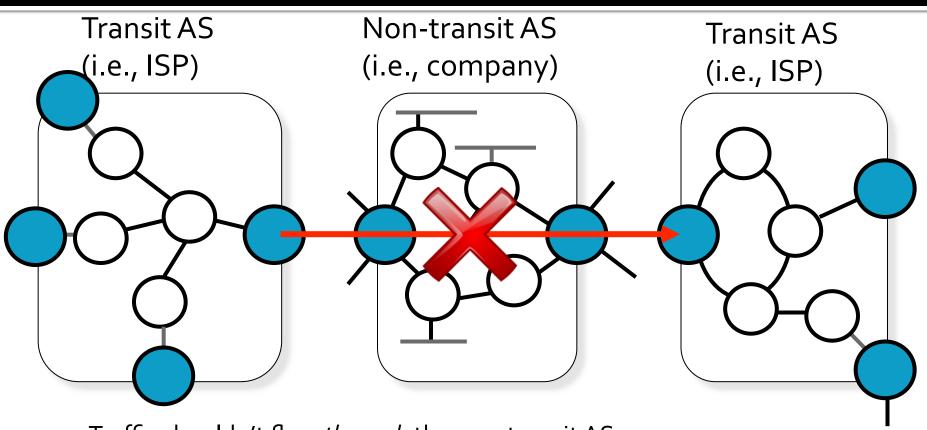
- BGP is the de facto standard
- BGP provides each AS a means to:
 - Obtain subnet reachability information from neighboring ASs
 - Propagate reachability information to all routers inside an AS
 - Determine "good" routes to subnets based on reachability information and policy
- Allows subnet to advertise its existence to rest of Internet: "I am here"


BGP Basics

- Pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions
 - BGP sessions need not correspond to physical links.
- When AS2 advertises a prefix to AS1:
 - AS2 promises it will forward datagrams towards that prefix.

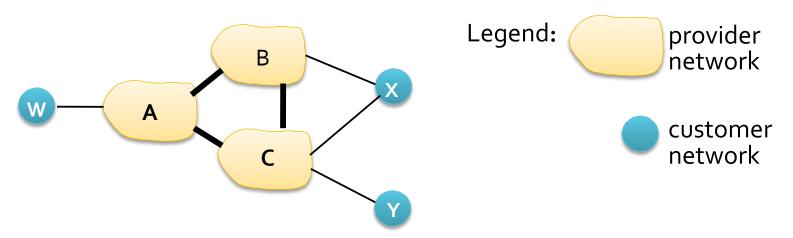
Distributing Reachability Info

- Using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- When router learns of new prefix, it creates entry for prefix in its forwarding table.


Border Gateway Protocol (BGP-4)

- BGP uses "path vectors" (AS_PATH)
 - Advertises complete "paths" a list of autonomous systems
 - "The network 171.64/16 can be reached via the path {AS1, AS5, AS13}"
 - Makes no use of distance vectors or link states
- Path selection
 - Supports CIDR (classless inter-domain routing)
 - Most specific entry wins
 - Paths with loops are detected locally and ignored
 - Local policies pick the preferred path among options
 - When a link/router fails, the path is "withdrawn"

BGP route selection


- Router may learn about more than 1 route to some prefix
 - Must select best route
- Elimination rules:
 - 1. Local preference value attribute: policy decision
 - Shortest AS-PATH
 - Not counting routers, but counting AS!
 - Closest NEXT-HOP router: hot potato routing
 - 4. Additional criteria (varies by administrator)

BGP Routing Policy (1)

- Traffic shouldn't flow through the non-transit AS
 - Paying ISPs for connectivity, not to route traffic for them!
 - Don't advertise any BGP routes between transit AS's
 - Pacific is dual-homed to TCTC (Time Warner) and SWIS (AT&T)

BGP Routing Policy (2)

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no \$\$\$ for routing CBAW since neither W nor C are customers of B
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Why Different Intra- and Inter-AS routing?

Policy

- Inter-AS: admin wants control over how its traffic is routed and who routes through its net
- Intra-AS: single admin, so no policy decisions needed

Scale

 Hierarchical routing saves table size and reduces update traffic

Performance

- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

Traceroute with AS Numbers

```
dhcp-10-6-162-134:~ shafer$ traceroute -a -q 1 www.msu.ru
traceroute to www.msu.ru (93.180.0.18), 64 hops max, 52 byte packets
   [AS65534] 10.6.163.254 (10.6.163.254) 1.677 ms
   [AS1] 10.0.0.141 (10.0.0.141) 1.116 ms
   [AS1] 10.0.0.90 (10.0.0.90) 1.053 ms
   [ASO] 138.9.253.252 (138.9.253.252) 5.200 ms
   [AS0] 74.202.6.5 (74.202.6.5) 8.137 ms
    [AS4323] paol-pr1-xe-1-2-0-0.us.twtelecom.net (66.192.242.70) 13.241 ms
    [AS3356] te-9-4.car1.sanjose2.level3.net (4.59.0.229) 92.772 ms
    [AS3356] vlan70.csw2.sanjose1.level3.net (4.69.152.126) 8.440 ms
    [AS3356] ae-71-71.ebr1.sanjose1.level3.net (4.69.153.5) 11.130 ms
    [AS3356] ae-2-2.ebr2.newyork1.level3.net (4.69.135.186) 80.992 ms
10
    [AS3356] ae-82-82.csw3.newyork1.level3.net (4.69.148.42) 77.316 ms
11
    [AS3356] ae-61-61.ebr1.newyork1.level3.net (4.69.134.65) 74.584 ms
12
    [AS3356] ae-41-41.ebr2.london1.level3.net (4.69.137.65) 147.127 ms
13
    [AS3356] ae-48-48.ebr2.amsterdam1.level3.net (4.69.143.81) 151.779 ms
14
   [AS3356] ae-1-100.ebr1.amsterdam1.level3.net (4.69.141.169) 152.848 ms
1.5
   [AS3356] ae-48-48.ebr2.dusseldorf1.level3.net (4.69.143.210) 156.349 ms
16
    [AS3356] 4.69.200.174 (4.69.200.174) 168.386 ms
17
    [AS3356] ae-1-100.ebr1.berlin1.level3.net (4.69.148.205) 167.652 ms
18
19
    [AS3356] ae-4-9.bar1.stockholm1.level3.net (4.69.200.253) 192.668 ms
20
    [AS3356] 213.242.110.198 (213.242.110.198) 176.501 ms
    [AS3267] b57-1-qw.spb.runnet.ru (194.85.40.129) 198.827 ms
21
    [AS3267] m9-1-gw.msk.runnet.ru (194.85.40.133) 204.276 ms
22
23
   [AS3267] msu.msk.runnet.ru (194.190.254.118) 202.454 ms
24
   [AS2848] 93.180.0.158 (93.180.0.158) 201.358 ms
   [AS2848] 93.180.0.170 (93.180.0.170) 200.257 ms
2.5
   [AS2848] www.msu.ru (93.180.0.18) 204.045 ms !Z
26
```

AS Numbers in Traceroute

AS	Name
0	Reserved (local use) – Pacific is here
4323	Time Warner Telecom
3356	Level 3 Communications
3267	Runnet - State Institute of Information Technologies & Telecommunications (SIIT&T "Informika")
2848	Moscow State University

Problems

- BGP designed for policy, not performance
- Susceptible to misconfiguration
 - Intentionally / accidentally announce routes to networks you cannot reach
- Incompatible policies might render networks unreachable

BGP, Censorship, and You (February 2008)

- Pakistan government orders Pakistan Telecom (AS 17557) to block access to YouTube
- Pakistan Telecom advertises a route for 208.65.153/24 (YouTube) to its customers leading to a black hole
- 3. That route is accidentally advertised to its provider (PCCW)
 - This is more specific than YouTube's (AS 36561) real advertisements (208.65.152/22)
 - Multiple routes → More specific route preferred
- 4. PCCW failed to verify that Pakistan Telecom actually owned YouTube's netblock (very common)
 - BGP uses transitive trust PCCW trusted P.T., and upstream providers trusted PCCW
- 5. Within ~3 minutes, large fraction of the Internet had bad route
 - YouTube traffic was routed to AS 17557 instead of AS 36561
 - AS 17557 can then just drop the received traffic

We Want Our Videos Back!

- 6. ~1 hour later, YouTube advertises that its addresses have been hijacked to its providers
 - YouTube verifiably owns that address space and its AS number
- 7. Autonomous systems stop using the bad route
 - YouTube also advertises its own /25 routes
- 8. ~1 hour later, Pakistan Telecom's provider (Hong Kong-based PCCW) withdraws bogus routes to AS 17557