ELEC / COMP 177 – Fall 2012

Computer Networking → Transport Layer (TCP & UDP)

Schedule

Tuesday

- Transport Layer (UDP/TCP)
- Homework 2 assigned
- Thursday
 - Transport Layer (UDP/TCP)
- Next Tuesday
 - Homework 2 due
 - C Programming tutorial+ Virtual Machine debug day

Bring your laptop next Tuesday!

Virtual Machine Installation

- Have a Linux Virtual Machine or dual-boot setup already?
- Yes? Just re-use it for this class
- No? Follow instructions from ECPE 170:
 - http://ecs-network.serv.pacific.edu/ecpe-170
 - Under "Tutorials"-> "Virtual Machine Setup"

Do this independently by next Tuesday (Sept 25th)
Email me if you have problems!

Software Installation

- Packages to install
 - Eclipse IDE with C/C++ Development Tools (CDT)
 - Compiler / build tools

sudo apt-get install build-essential eclipse-cdt

Transport Layer

Recap – Network Model

Application Layer Transport Layer Network Layer Link Layer Physical Layer

Recap – Physical Layer

Application Layer Transport Layer Network Layer Link Layer Physical Layer "Bits on a wire" **Encoding schemes** fight: attenuation distortion clock skew

Recap – Link Layer

Recap – Network Layer

Introducing the Transport Layer

Goals this Week

- Understand principles behind transport layer services:
 - Multiplexing/demultiplexing
 - Reliable data transfer
 - Flow control
 - Congestion control
- Learn about transport layer protocols in the Internet:
 - UDP: connectionless transport
 - TCP: connection-oriented transport
 - Flow control + congestion control

Goal of Transport Layer

- Provide logical communication between application processes running on different hosts
- Transport protocols run in end systems
 - Send side: breaks app messages into segments, passes to network layer
 - Receive side: reassembles segments into messages, passes to app layer
- More than one transport protocol available to apps
 - Internet: TCP and UDP

Transport –vs– network layer

- Transport layer: logical communication between processes
 - Relies on and enhances network layer services
- Network layer: logical communication between hosts

Household analogy:

- 12 kids sending letters to 12 kids
- Processes = kids
- App messages = letters in envelopes
- Hosts = houses
- Transport protocol = Parents
- Network-layer protocol = postal service

Internet Transport-layer Protocols

- Unreliable, unordered delivery (UDP)
 - No-frills extension of "besteffort" IP
- Reliable, in-order delivery (TCP)
 - Congestion control
 - Flow control
 - Connection setup
- Services not available:
 - Delay guarantees
 - Bandwidth guarantees

Multiplexing / Demultiplexing

Multiplexing at send host:

Gathering data from multiple sockets, enveloping data with header (later used for demultiplexing)

Demultiplexing at recv host:

Delivering received segments to correct socket

host 1 host 2 host 3

Demultiplexing Operation

- Host receives IP datagrams
 - Each datagram has source and destination IP addresses
 - Each datagram carries 1 transport-layer segment
 - Each segment has source and destination port number
- Host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

Connectionless Demultiplexing

- Create sockets with port numbers
- UDP socket identified by two keys:
 - (dest IP address, dest port number)
- When host receives UDP segment:
 - Check destination port number in segment
 - Direct UDP segment to socket with that port number
- IP datagrams with different source IP addresses and/or source port numbers are directed to same socket on receiver

Connectionless Demultiplexing

Server C is listening on port 6428

Source Port (SP) provides "return address"

Connection-Oriented Demux

- TCP socket identified by 4 keys:
 - Source IP address
 - Source port number
 - Dest IP address
 - Dest port number
- Receiving host uses all four values to direct segment to appropriate socket

- Server may support many simultaneous TCP sockets:
 - Each socket identified by its own 4 keys
- Web servers have different sockets for each connecting client
 - Non-persistent HTTP will have different socket for each request

Connection-Oriented Demux

UDP – User Datagram Protocol

Connectionless Transport

UDP: User Datagram Protocol [RFC 768]

- "No frills, bare bones" Internet transport protocol
- "Best effort" service
- UDP segments may be:
 - Lost
 - Delivered out of order to app
- Connectionless
 - No handshaking between UDP sender, receiver
 - Each UDP segment handled independently of others

Why is there a UDP?

- No connection establishment (adds delay)
- Simple: no connection state at sender / receiver
- Small segment header
- No congestion control
 - UDP can blast away as fast as desired

UDP

- Often used for streaming multimedia apps
 - Loss tolerant
 - Rate sensitive
- Other UDP uses
 - DNS
 - SNMP
- Reliable transfer over UDP: add reliability at application layer
 - Application-specific error recovery!

Length, in solution bytes of UDP segment, including header

← 32 bits →	
source port #	dest port #
length	checksum
Application data (message)	

UDP segment format

UDP Checksum

Goal: detect errors (e.g., flipped bits) in transmitted segment

Sender

- Treat segment contents as sequence of 16-bit integers
- Checksum: addition
 (1's complement sum)
 of segment contents
- Sender puts checksum value into UDP checksum field

Receiver

- Compute checksum of received segment
- Check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected.
 But maybe errors
 nonetheless? More later

Reliable Data Transfer

Stepping through the design of TCP

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

- (a) provided service
- Characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

 Characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

 Characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

Intro to Reliable Data Transfer

- The plan: Incrementally develop sender / receiver sides of reliable data transfer protocol (rdt), a fictional protocol
 - TCP is similar to RDT but too complex to describe all at once
- Consider only unidirectional data transfer
 - but control info will flow on both directions!
- Use finite state machines (FSM) to specify sender, receiver

rdt1.o: Reliable Transfer Over a Reliable Channel

- Underlying channel perfectly reliable
 - No bit errors
 - No loss of packets
- Separate FSMs for sender, receiver:
 - Sender sends data into underlying channel
 - Receiver reads data from underlying channel

sender

receiver

rdt2.o: Channel with Bit Errors

- Underlying channel may flip bits in packet
 - Checksum to detect bit errors
- But, how do we recover from errors?
 - Acknowledgements (ACKs): receiver explicitly tells sender that packet received OK
 - Negative acknowledgements (NAKs): receiver explicitly tells sender that packet had errors
 - Sender retransmits packet on receipt of NAK
- New mechanisms in rdt2.0 (beyond rdt1.0):
 - Error detection
 - Receiver feedback
 - Control msgs (ACK,NAK) go from receiver to sender

rdt2.o: FSM specification

receiver

rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt send(NAK) Wait for call from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data)

udt send(ACK)

rdt2.0: Operation with No Errors

rdt2.0: Error Scenario

rdt2.0 has a Fatal Flaw!

- What happens if ACK/ NAK is corrupted?
 - Sender doesn't know what happened at receiver!
- Can't just retransmit
 - Receiver might get duplicate data

- Handling duplicates:
 - Sender retransmits current packet if ACK/NAK garbled
 - Sender adds sequence number to each packet
 - Receiver discards (doesn't deliver) duplicate packet
- Stop and wait design
 - Sender sends 1 packet, then waits for receiver response

rdt2.1: Sender – Handles Garbled ACK/NAKs

rdt2.1: Receiver – Handles Garbled ACK/NAKs

rdt2.1: Discussion

Sender:

- Seq # added to pkt
- Two seq. #'s (0,1) will suffice. Why?
- Must check if received ACK/NAK corrupted
- Twice as many states
 - State must "remember" whether "current" packet has sequence number of o or 1

Receiver:

- Must check if received packet is duplicate
 - State indicates whether o or 1 is expected packet sequence number
- Receiver can not know if its last ACK/NAK received OK at sender
 - Packet corruption can affect ACK/NAK packets...

rdt2.2: a NAK-free protocol

- Same functionality as rdt2.1
- No NAKs!
 - Receiver instead sends ACK for last packet received OK
 - Receiver must explicitly include seq # of packet being ACKed
- Duplicate ACK at sender results in same action as NAK
 - Retransmit current packet

rdt2.2: Partial Sender and Receiver

rdt3.o: Channels with Errors and Loss

- New assumption
 - Underlying channel can also lose packets (data or ACKs)
 - Checksum, seq. #, ACKs, and retransmissions will help but are not sufficient

- New approach
 - Sender waits "reasonable" amount of time for ACK
 - Retransmits if no ACK received in this time
 - If pkt (or ACK) is just delayed but not lost:
 - Retransmission will be duplicate, but seq. #'s solves this problem
 - Receiver must specify seq # of pkt being ACKed
 - Requires countdown timer

rdt3.o Sender

rdt3.0 in Action

rdt3.0 in Action

Performance of rdt3.0

- rdt3.o works, but performance stinks
- For 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

$$d_{trans} = \frac{L}{R} = \frac{8000 \text{bits}}{10^9 \text{bps}} = 8 \text{ microseconds}$$
 How long it takes to push packet out onto wire

U_{sender}: utilization: fraction of time sender busy sending

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

- 1KB packet every 30 msec
 - 33kB/sec throughput over 1 Gbps link
 - Network protocol limits use of physical resources!

rdt3.o: Stop-and-Wait Operation

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-be-acknowledged packets

- Range of sequence numbers must be increased
- Buffering at sender and/or receiver

Two generic forms of pipelined protocols: go-Back-N and selective repeat

Pipelining: Increased Utilization

Pipelining Protocols

GO-BACK-N

- Sender
 - Up to N unACKed pkts in pipeline
- Receiver
 - Only sends cumulative ACKs
 - Doesn't ACK packet if there's a gap
- Sender
 - Has timer for oldest unACKed packet
 - If timer expires: retransmit all unACKed packets

SELECTIVE REPEAT

- Sender
 - Up to N unACKed packets in pipeline
- Receiver
 - ACKs individual pkts
- Sender
 - Maintains timer for each unACKed pkt
 - If timer expires: retransmit only unACKed packet

Go-Back-N: Sender

- k-bit sequence # in packet header
- "Window" of up to N, consecutive unACKed pkts allowed
- ACK(n): ACKs all pkts up to, including seq # n
 - Referred to as a "cumulative ACK"
 - May receive duplicate ACKs (see receiver)
- Timer for oldest in-flight packet
- timeout(n): retransmit packet n and all higher seq # packets in window

GBN: Sender Extended FSM

```
rdt send(data)
                       if (nextsegnum < base+N) {
                          sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
                          udt send(sndpkt[nextsegnum])
                          if (base == nextseqnum)
                           start timer
                          nextsegnum++
                       else
                        refuse data(data)
  base=1
  nextseqnum=1
                                           timeout
                                          start timer
                             Wait
                                          udt send(sndpkt[base])
                                          udt send(sndpkt[base+1])
rdt rcv(rcvpkt)
 && corrupt(rcvpkt)
                                          udt send(sndpkt[nextseqnum-1])
 Λ
                         rdt rcv(rcvpkt) &&
                           notcorrupt(rcvpkt)
                         base = getacknum(rcvpkt)+1
                         If (base == nextseqnum)
                           stop timer
                          else
                           start timer
```

GBN: Receiver Extended FSM

- ACK-only: always send ACK for correctly-received pkt with highest in-order seq #
 - May generate duplicate ACKs
 - Need only remember expectedseqnum
- Out-of-order pkt:
 - Discard (don't buffer) -> no receiver buffering! (reduces complexity)
 - Re-ACK pkt with highest in-order seq #

GBN in action

Selective Repeat

- Receiver individually acknowledges all correctly received packets
 - Buffers packets, as needed, for eventual in-order delivery to upper layer
- Sender only resends packets for which ACK was not received
 - Sender timer for each unACKed packets
- Sender window
 - N consecutive seq #'s
 - Again limits seq #s of sent, unACKed packets

Selective Repeat: Sender and Receiver windows

(b) receiver view of sequence numbers

Selective Repeat

SENDER

- Data from above :
 - If next available seq # in window, send pkt
- timeout(n):
 - Resend pkt n, restart timer
- ACK(n) in [sendbase, sendbase+N]:
 - Mark pkt n as received
 - If n is smallest unACKed pkt, advance window base to next unACKed seq #

RECEIVER

- pkt n in [rcvbase, rcvbase+N-1]
 - Send ACK(n)
 - Out-of-order: buffer
 - In-order: deliver (also deliver buffered, in-order pkts), advance window to next notyet-received pkt
- pkt n in [rcvbase-N,rcvbase-1]
 - ACK(n) (this is a packet that was previously received...)
- Otherwise:
 - Ignore

Selective Repeat in Action

Selective Repeat: Dilemma

- Example
 - seq #'s: 0, 1, 2, 3
 - window size=3
- Receiver sees no difference in two scenarios!
 - Is it a retransmitted packet, or a new packet?
 - Incorrectly passes duplicate data as new in (a)
- Q: What relationship is needed between seq # size and window size?
- A: Twice as many seq #'s

TCP – Transmission Control Protocol

TCP: Overview

RFCs: 793, 1122, 1323, 2018, 2581

- Point-to-point:
 - One sender, one receiver
- Reliable, in-order byte steam:
 - No "message boundaries"
- Pipelined:
 - TCP congestion and flow control set window size
- Send & receive buffers

Full duplex data:

- Bi-directional data flow in same connection
- MSS: maximum segment size
- Connection-oriented:
 - Handshaking (exchange of control msgs) initializes sender, receiver state before data exchange
- Flow controlled:
 - Sender will not overwhelm receiver

TCP segment structure

URG: urgent data (generally not used)

ACK: ACK # valid

PSH: push data now (generally not used)

RST, SYN, FIN: connection estab (setup, teardown commands)

Internet checksum'
(as in UDP)

counting by bytes of data (not segments!)

> # bytes receiver willing to accept

TCP seq. #'s and ACKs

Seq. #'s:

Byte stream
 "number" of first byte
 in segment's data

ACKs:

- Seq # of next byte expected from other side
- Cumulative ACK
 How does receiver handle out-of-order segments?
 - TCP spec doesn't say,up to implementer

simple telnet scenario

TCP Round Trip Time and Timeout

- How to set TCP timeout value?
- Should be longer than RTT (round-trip-time)
 - But RTT varies...
- If it is too short
 - Premature timeout
 - Unnecessary retransmissions...
- If it is too long
 - Slow reaction to segment loss

- How can we estimate RTT?
- Measure time from segment transmission until ACK receipt
 - Ignore retransmissions
 - Call this "SampleRTT"
- SampleRTT will vary
 - We want a "smoother" estimated RTT
 - Average several recent measurements, not just current SampleRTT

TCP Round Trip Time and Timeout

- Exponential weighted moving average
- Influence of past sample decreases exponentially fast
- Typical value: α = 0.125

```
EstimatedRTT = (1-\alpha)*EstimatedRTT + \alpha*SampleRTT
```

Example RTT Estimation

TCP Round Trip Time and Timeout

- Setting the TCP timeout
 - EstimtedRTT plus "safety margin"
 - The larger the variation in EstimatedRTT, the larger the safety margin

TCP Reliable Data Transfer

- TCP creates rdt service on top of unreliable IP
- Features of TCP
 - Pipelined segments
 - Cumulative ACKs
- TCP uses single retransmission timer

- Retransmissions are triggered by
 - timeout events
 - duplicate ACKs
- Initially consider simplified TCP sender:
 - Ignore duplicate ACKs
 - Ignore flow control
 - Ignore congestion control

TCP Sender Events

- Data received from app:
 - Create segment with seq #
 - seq # is byte-stream number of first data byte in segment
 - Start timer if not already running (think of timer as for oldest unACKed segment)
 - Expiration interval: TimeOutInterval

- Timeout:
 - Retransmit segment that caused timeout
 - Restart timer
- ACK received:
 - If acknowledges previously unACKed segments
 - Update what is known to be ACKed
 - Start timer if there are outstanding segments

TCP Retransmission Scenarios

TCP Retransmission Scenarios

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver	TCP Receiver action
Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK
Arrival of in-order segment with expected seq #. One other segment has ACK pending	Immediately send single cumulative ACK, ACKing both in-order segments
Arrival of out-of-order segment higher-than-expect seq. # . Gap detected	Immediately send duplicate ACK, indicating seq. # of next expected byte
Arrival of segment that partially or completely fills gap	Immediate send ACK, provided that segment starts at lower end of gap

Fast Retransmit

- Time-out period often relatively long
 - Long delay before resending lost packet
- Detect lost segments via duplicate ACKs.
 - Sender often sends many segments back-to-back
 - If segment is lost, there will likely be many duplicate ACKs for that segment

- If sender receives 3 ACKs for same data, it assumes that segment after ACKed data was lost:
 - Fast retransmit: resend segment before timer expires

TCP Flow Control

Receive side of TCP connection has a receive buffer:

- Application process may be slow at reading from buffer
 - What if buffer fills up?

Flow Control:

Prevents **sender** from **overflowing receiver's buffer** by transmitting too much, too fast

Speed matching service: matching send rate to receiving application's drain rate

TCP Flow Control: How it Works

- Suppose TCP receiver discards out-of-order segments...
- Unused buffer space= rwnd
 - RcvBuffer-[LastByteRcvd LastByteRead]

- Receiver notifies sender of unused buffer space
 - Segment header includes the rwnd value
- Sender limits # of unACKed bytes to rwnd
 - Guarantees receiver's buffer doesn't overflow

- TCP sender and receiver establish "connection" before exchanging data segments
 - Client initiates connection
 - Calls connect() to an IP/port
 - Server is contacted by client
 - Calls accept()
- TCP variables initialized while establishing connection
 - Sequence #s
 - Buffers and flow control info (e.g. RcvWindow)

- Three way handshake:
- Step 1: client host sends TCP SYN segment to server
 - Specifies initial seq #
 - No data
- Step 2: server host receives SYN, replies with SYNACK segment
 - Server allocates buffers
 - Specifies server initial seq. #
- Step 3: client receives SYNACK, replies with ACK segment, which may contain data

Closing a connection:

client closes socket via close():

Step 1: client system sends TCP FIN control segment to server

Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN.

Step 3: client receives FIN, replies with ACK.

- Enters "timed wait" will respond with ACK to received FINs
- Why not close immediately? Avoids potential problems if a new socket (with same ports and IPs) is created, and then old delayed data is delivered...

Step 4: server, receives ACK.
Connection closed

Congestion Control

Principles and TCP Specifics

Principles of Congestion Control

- What is congestion?
 - Informally: "too many sources sending too much data too fast for network to handle"
- Different from flow control!
- Manifestations
 - Lost packets (buffer overflow at routers)
 - Long delays (queueing in router buffers)

- Two senders, two receivers
- One router, infinite buffers
- No retransmission
- Link BW of R

- Large delays when congested
- Maximum achievable throughput

- One router, finite buffers
- Sender retransmission of lost packet

- Case a: Sender only transmits when it knows buffer space is available in router (unrealistic)
- Case b: Sender retransmits only when packet is known to be lost
 - New cost of congestion: More sender work (retrans) for given "goodput"
- Case c: Assume sender also retransmits when a packet is delayed (not lost), i.e. a premature timeout (bigger λ_{in})
 - New cost of congestion: router output link carries multiple copies of packet

- Four senders
- Multihop paths
- Timeout/retransmit

 $\underline{\mathbf{Q}}$: what happens as λ_{in} and λ_{in}' increase?

- A new cost of congestion
 - When packet dropped, any upstream transmission capacity used for that packet was wasted!

Congestion Control Approaches

Two broad approaches to congestion control:

- End-end congestion control:
 - No explicit feedback from network
 - Congestion inferred from end-system observed loss, delay
 - Approach taken by TCP

- Network-assisted congestion control:
 - Routers provide feedback to end systems
 - Single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - Explicit rate sender should send at

TCP Congestion Control

- Goal: TCP sender should transmit as fast as possible, but without congesting network
- How do we find the rate just below congestion level?
 - Decentralized approach each TCP sender sets its own rate, based on implicit feedback:
 - ACK indicates segment received (a good thing!)
 - Network not congested, so increase sending rate
 - Lost segment <u>assume</u> loss is due to congested network, so decrease sending rate

TCP Congestion Control: Bandwidth Probing

- Probing for bandwidth
 - Increase transmission rate on receipt of ACK, until eventually loss occurs, then decrease transmission rate

How fast to increase or decrease?

TCP Congestion Control: Details

Sender limits rate by limiting number of unACKed bytes "in pipeline":

LastByteSent-LastByteAcked ≤ cwnd

- cwnd: differs from rwnd (how, why?)
- sender limited by min (cwnd, rwnd)
- Roughly,

- cwnd (congestion window) is a function of perceived network congestion
- **rwnd** (receiver window) is explicitly changed by receiver

TCP Congestion Control Details

BAD: DATA LOSS

3 duplicate ACKs?

- At least some segments getting through (recall fast retransmit)
- Cut cwnd in half

Timeout?

- No response from receiver
- Cut cwnd to 1
 - Very aggressive slowdown!

GOOD: ACK RECEIVED

- Slowstart phase (connection start or after timeout):
 - Increase cwnd exponentially fast
 - Think name is backwards?Think "avoiding a slow start"
- Congestion avoidance
 - Increase cwnd linearly

TCP Slow Start Phase

- When connection begins,cwnd = 1 MSS
 - Example: MSS = 500 bytes & RTT = 200 msec
 - Initial rate = 20 kbps
- Available bandwidth may be >> MSS/RTT
 - Goal: quickly ramp up to respectable rate
- Increase rate exponentially until first loss event or when threshold reached
 - Double cwnd every RTT
 - Done by incrementing cwnd by 1 for every ACK received

Leaving Slow Start via ssthresh

- Slow start phase must end
 - If we keep exponentially increasing our bandwidth usage, we're sure to cause congestion!
- When do we stop increasing rapidly?
 - Based on a new value: ssthresh
 - Slow start threshold maintained by TCP
 - When cwnd >= ssthresh: transition from slowstart to congestion avoidance phase
- Starts off high at first
- Set to ssthresh=cwnd/2 when data loss occurs
 - Remember (half of) TCP rate when congestion last occurred

TCP Congestion Avoidance Phase

- New phase: when
 cwnd > ssthresh,
 grow cwnd linearly
 - Increase cwnd by 1 MSS per RTT
 - Approach possible congestion slower than in slowstart

AIMD

- ACKs: increase cwnd by 1 MSS per RTT: additive increase
- loss: cut cwnd in half (non-timeout-detected loss): multiplicative decrease

AIMD: <u>A</u>dditive <u>I</u>ncrease <u>M</u>ultiplicative <u>D</u>ecrease

TCP Congestion Control FSM: Overview

Summary: TCP Congestion Control

- When cwnd < ssthresh, sender in slow-start phase
 - Window grows exponentially.
- When cwnd >= ssthresh, sender is in congestion-avoidance phase
 - Window grows linearly.
- When 3 duplicate ACKs received
 - ssthresh set to cwnd/2
 - cwnd set to ~ ssthresh
- When timeout occurs
 - ssthresh set to cwnd/2
 - cwnd set to 1 MSS.

TCP Fairness

fairness goal: if KTCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

Why is TCP fair?

Two competing sessions:

- Additive increase gives slope of 1, as throughout increases
- Multiplicative decrease decreases throughput proportionally

Fairness

Fairness and UDP

- Multimedia apps often do not use TCP
 - Do not want rate throttled by congestion control
- Instead use UDP
 - Pump audio/video at constant rate
 - Tolerate packet loss
- UDP can "crowd out" TCP

Fairness and parallel TCP Connections

- Nothing prevents app from opening parallel connections between 2 hosts.
- Web browsers do this
- Example: link of rate R supporting 9 connections;
 - New app asks for 1 TCP, gets rate R/10
 - New app asks for 11 TCPs, gets > R/2!

Summary

User Datagram Protocol (UDP) Characteristics

- UDP is a connectionless datagram service.
 - There is no connection establishment: packets may show up at any time.
- UDP packets are self-contained.
- UDP is unreliable:
 - No acknowledgements to indicate delivery of data.
 - Checksums cover the header, and only optionally cover the data.
 - Contains no mechanism to detect missing or missequenced packets.
 - No mechanism for automatic retransmission.
 - No mechanism for flow control or congestion control (sender can overrun receiver or network)

TCP Characteristics

- TCP is connection-oriented.
 - 3-way handshake used for connection setup
- TCP provides a stream-of-bytes service
- TCP is reliable:
 - Acknowledgements indicate delivery of data
 - Checksums are used to detect corrupted data
 - Sequence numbers detect missing, or mis-sequenced data
 - Corrupted data is retransmitted after a timeout
 - Mis-sequenced data is re-sequenced
 - (Window-based) Flow control prevents over-run of receiver
- TCP uses congestion control to share network capacity among users