ELEC/COMP 177 - Fall 2012

Computer Networking
=>» Transport Layer (TCP & UDP)

Schedule

Tuesday

Transport Layer (UDP/TCP)

Homework 2 assigned
Thursday

Transport Layer (UDP/TCP)
Next Tuesday

Homework 2 due

C Programming tutorial Brinaiourlantop
+ Virtual Machine debug day nextTuesdayd

Virtual Machine Installation

Have a Linux Virtual Machine or dual-boot
setup already?

Yes? Justre-use it for this class

No? Follow instructions from ECPE 170:

http://ecs-network.serv.pacific.edu/ecpe-170
Under “Tutorials”-> "Virtual Machine Setup”

Do this independently by next Tuesday (Sept 25t")
Email me if you have problems!

Software Installation

Packages to install
Eclipse IDE with C/C++ Development Tools (CDT)
Compiler / build tools

sudo apt-get install build-essential eclipse-cdt

Transport Layer

Recap — Network Model

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Recap — Physical Layer

Application Layer
Transport Layer
Network Layer

Link Layer
Physical Layer

"Bits on a wire” Encoding schemes fight:
attenuation
distortion
clock skew

Recap — Link Layer

Application Layer
Transport Layer
Network Layer

Link Layer ; Transfer
Ethernet! — nbeeigvk\llsf):s E
Framing MAC addresses
Media Access
Control

Error Detection Hubs & Switches

Recap — Network Layer

Application Layer
Transport Layer

Network Layer
End-to-End

— packet :
IP — Internet Protocol! =~ transfer -

o

> |

Packet Headers ICMP for error Routers
reporting and

IP Addresses router signaling Routing Protocols

Introducing the Transport Layer

Application Layer

HTTP DNS (many others!)

Sockets

Transport Layer

End-to-End
message
transfer

Flow Control Congestion Control

TCP UDP

10

Goals this Week

Understand principles behind transport layer
services:

Multiplexing/demultiplexing
Reliable data transfer
Flow control

Congestion control
Learn about transport layer protocols in the
Internet:

UDP: connectionless transport

TCP: connection-oriented transport
Flow control + congestion control

11

Goal of Transport Layer

Provide logical communication —
between application processes transp-rt._|
networR
running on different hosts
physical
Transport protocols run in end C
systems

Send side: breaks app
messages into segments,
passes to network layer

Receive side: reassembles
segments into messages,

Ba.
passes to app layer transport

More than one transport
protocol available to apps

Internet: TCP and UDP

12

Transport —vs— network layer

logical Household analogy:
communication between 12 kids sending letters to 12
processes kids
Relies on and enhances Processes = kids
network layer services App messages = letters in
logical envelopes
communication between Hosts = houses

hosts Transport protocol =

Parents
Network-layer protocol =
postal service

13

Internet Transport-layer Protocols

Unreliable, unordered delivery
(UDP)

No-frills extension of “best-
effort” IP

Reliable, in-order delivery
(TCP)

application

network
data link

—|physical

&

@2

n
dat 0
physici¥

network
data link
sical

@,

network &

Congestion control data link
physical ork 2
Flow control R,
I network
Connection setup netuork _
physical network a. —s
. . data link network
Services not available:

Delay guarantees
Bandwidth guarantees

. [physical data link
physical
@2l (@@Qj @

14

Multiplexing / Demultiplexing

— Multiplexing at send host:

- Demultiplexing at recv host: ——

Gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Delivering received segments
to correct socket

= socket = process

application ©Ef 7. application "z B application

transport | _transpoFt\ — | transport

network network network

link link link

physical physical physical
host 1 host 2 host 3

15

Demultiplexing Operation

Host receives IP datagrams

Each datagram has source
and destination IP addresses

Each datagram carries a1
transport-layer segment

Each segment has source and

destination port number
Host uses IP addresses &
port numbers to direct
segment to appropriate
socket

TCP/UDP segment format

32 bits

source port # dest port #

other header fields

application
data
(message)

16

Connectionless Demultiplexing

Create sockets with port numbers
UDP socket identified by two keys:

(dest IP address, dest port number)
When host receives UDP segment:

Check destination port number in segment

Direct UDP segment to socket with that port
number
IP datagrams with different source IP
addresses and/or source port numbers are
directed to same socket on receiver

Connectionless Demultiplexing

Server Cis listening on port 6428

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775
client DP: 6428 cerver DP: 6428 Client
IP: A IP: C IP:B

Source Port (SP) provides “return address”

18

Connection-Oriented Demux

TCP socket identified
by 4 keys:
Source IP address
Source port number
Dest IP address
Dest port number

Receiving host uses all
four values to direct
segment to
appropriate socket

Server may support
many simultaneous TCP
sockets:

Each socket identified by
its own 4 keys

Web servers have
different sockets for each
connecting client

Non-persistent HTTP will
have different socket for
each request

19

Connection-Oriented Demux

SP: 5775

DP: 80

S-1P: B

D-IP:C

client
IP: A

SP: 9157

DP: 80

S-1P: A

D-IP:C

server
IP: C

SP: 9157

DP: 80

S-IP: B

D-IP:C

Client
IP:B

20

UDP — User Datagram Protocol

Connectionless Transport

UDP: User Datagram Protocol [RFC 768]

“"No frills, bare bones”
Internet transport
protocol

"Best effort” service
UDP segments may be:

Lost

Delivered out of order to
app
Connectionless

No handshaking between
UDP sender, receiver

Each UDP segment
handled independently of
others

Why is there a UDP?
No connection
establishment
(adds delay)

Simple: no connection
state at sender / receiver
Small segment header
No congestion control

UDP can blast away as fast
as desired

22

UDP

< 2 bits -

Often used for 3
streami ng Length, in | SOurce port # dest port #
multimedia apps bytes of UDP [length checksum

Loss tolerant segment,

o including

Rate sensitive header
Other UDP uses

DNS Application

SNMP data
Reliable transfer over (message)
UDP: add reliability at

application layer

Application-specific UDP segment format
error recovery!

23

UDP Checksum

Goal: detect errors (e.g., flipped bits) in transmitted segment

Sender Receiver
Treat segment contents Compute checksum of
as sequence of 16-bit

_ received segment
integers
Checksum: addition

1's complement sum)
E)f segmre)nt contents checksum field value:

Sender puts checksum NO - error detected
value into UDP YES - no error detected.

But maybe errors
nonetheless? More later....

Check if computed
checksum equals

checksum field

24

Reliable Data Transfer

Stepping through the design of TCP

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

sending receiver
Drocess process
1

l>()re|ic1b|e c:hcurmel)j

application
layer

transport
layer

() provided service

Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

26

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

sending receiver
Drocess process
1

l»()relicuble c:hcurmel)j

application
layer

transport
layer

Junreliable chcmnel);r

(a) provided service (b) service implementation

Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

27

Principles of Reliable data transfer

Reliability is important in application, transport, and link layers

-
O
O O
O 5‘ |receiver I
8 —= DrOCEss process
- 1
dt d .
o l»()relicuble c:hcurmel)j rat_send() deliver data()
8_ 0 reliable data reliable data
@A > transfer protocol transfer protocol
% O (sending side) (receiving side)
= udt_send()i [packet | [packet| Irdt rev ()

Junreliable chcmnel)i

(a) provided service (b) service implementation

Characteristics of unreliable channel will determine complexity of reliable data
transfer protocol (rdt)

28

Reliable data transfer: getting started

rdt send () : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side)

deliver data() : called by
rdt to deliver data to app.

/

data Tdeliver_data ()

reliable data

transfer protocol

(receiving side)

udt_send ()} [pocke

packet Irdt_rcv ()

T-b()unrelicjble channel)J

udt send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

29

Intro to Reliable Data Transfer

The plan: Incrementally develop sender [receiver sides of
reliable data transfer protocol (rdt), a fictional protocol
TCP is similar to RDT but too complex to describe all at once
Consider only unidirectional data transfer
but control info will flow on both directions!

Use finite state machines (FSM) to specify sender,
receiver

event causing state transition
actions taken on state transition

State: When in this —_ T
“state”, next state event
uniquely determined actions
by next event)

A (uppercase Lambda = empty set)
30

rdti.o0: Reliable Transfer Over a

Reliable Channel

Underlying channel perfectly reliable
No bit errors

No loss of packets
Separate FSMs for sender, receiver:

Sender sends data into underlying channel
Receiver reads data from underlying channel

7 Wait for) rdt=send(data) y Wait for) rdt_rcv(packet)
call from call from
above packet = make_pkt(data) below extract (packet,data)

udt_send(packet) deliver_data(data)

sender receiver

31

rdt2.0: Channel with Bit Errors

Underlying channel may flip bits in packet

Checksum to detect bit errors
But, how do we recover from errors?

Acknowledgements (ACKSs): receiver explicitly tells
sender that packet received OK

Negative acknowledgements (NAKSs): receiver explicitly
tells sender that packet had errors

Sender retransmits packet on receipt of NAK
New mechanismsin rdt2.0 (beyond rdt1.0):

Error detection

Receiver feedback
Control msgs (ACK,NAK) go from receiver to sender

32

rdt2.0: FSM specification

rdt send(data)
snkpkt = make_pkt(data, checksum)

rdt_rcv(rcvpkt) && recelver
iISNAK(rcvpkt)
rdt_rcv(rcvpkt) &&
call rom udt_send corrupt(rcvpkt)
above (sndpkt)

udt_send(NAK)

rdt rcv(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

33

rdt2.0: Operation with No Errors

rdt send(data)
snkpkt = make_pkt(data, checksum)

——— rdt_rcv(rcvpkt) &&

iISNAK K
IS (revpkt) rdt_rcv(rcvpkt) &&
call from dt_send corrupt(rcvpkt)
above vdpkt)
(Shdp udtrs_enwd(NAK)
:dt rcv(rcvpkt) && isACK(rcvpkt) * /\Wait for

A call from

below

d pkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
idt_send(ACK)

34

rdt2.0: Error Scenario

rdt send(data)
snkpkt = make_pkt(data, checksum)

S - -“—2'.‘ " pkt) &&
Wait for Wait for ISNARTCve rdt_rcv(rcvpkt) &&
call from
bove udt_send corrupt(rcvpkt)
(sndpkt) dt_send(NAK)
:dt rcv(rcvpkt) && isACK(rcvpkt) * /Wait for

call from
below

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

)

35

rdt2.0 has a Fatal Flaw!

What happens if ACK/ Handling duplicates:

NAK is corrupted? Sender retransmits current
packet if ACK/NAK garbled

Sender adds sequence
number to each packet

Sender doesn’t know
what happened at
receiver!

Can't just retransmit

Receiver might get
duplicate data

Receiver discards (doesn’t
deliver) duplicate packet

Stop and wait design

Sender sends 1 packet,
then waits for receiver
response

36

rdt2.1: Sender — Handles Garbled ACK/NAKSs

Sequence #!
rdt_send(data) \L ?

sndpkt = make_ pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&
, (corrupt(rcvpkt) ||
‘,QVS',?S{ isSNAK(rcvpkt))
NAK 0 udt_send(sndpkt)

Wait for
call O fro

above
rdt_rcv(rcvpkt) f rdt_rov(rovpkt)
&& potcorrupt(rCVpkt) &&_notcorrupt(rcvpkt)
&&ﬂ'ﬂ%wm \ && isACK(rcvpkt)
A
\’/A\V(a:i}’ifgrr Wait for
rdt_rcv(rcvpkt) && NAK 1 Ca;'bl\‘;reom
(corrupt(rcvpkt) ||
isSNAK(rcvpkt)) rdt_send(data)
udt send sndpkt = make_pkt(1, data, checksum)

(sndpkt) udt_send(sndpkt) 4____ Sequence #!

37

rdt2.1: Receiver — Handles Garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

38

rdt2.1: Discussion

Sender: Receiver:
Seq # added to pkt Must check if received
Two seq. #'s (0,1) will packet is duplicate
suffice. Why? State indicates whether o or 1
Must check if received is expected packet sequence
ACK/NAK corrupted number

Receiver can not know if its
State must “remember” last ACK/NAK received OK
whether “current” packet has at sender

sequence number of o or1 Packet corruption can affect
ACK/NAK packets...

Twice as many states

39

rdt2.2: a NAK-free protocol

Same functionality as rdt2.1
No NAKS!

Receiver instead sends ACK for last packet
received OK

Receiver must explicitly include seq # of packet
being ACKed

Duplicate ACK at sender results in same
action as NAK

Retransmit current packet

rdt2.2: Partial Sender and Receiver

rdt_send(data)
sndpkt = make pkt(0, data, checksum)

. udt_send(sndpkt rdt_rcv(rcvpkt) &&
RN (corrupt(rcvpkt) ||

Wt for Wait for isACK(rcvpkt,1))
above

ACK
udt_send(sndpkt)
sender FSM

0
.. fragment rdt_rev(rcvpkt)
................. && notcorrupt(rcvpkt)

.. && isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
has_seq1(rcvpkt receiver FSM e A
1t send(ondok @ment T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e

&& has seqi(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_ pkt(ACK1, chksum)
udt_send(sndpkt)

41

rdt3.o0: Channels with Errors and Loss

New assumption New approach

Sender waits “reasonable”
amount of time for ACK

Retransmits if no ACK

Underlying channel can
also lose packets

(data or ACKs) received in this time

Checksum, seq. #, ACKs, If pkt (or ACK) is just

and retransmissions will delayed but not lost:

help but are not Retransmission will be

sufficient du.plicate, but seq. #'s solves
this problem

Receiver must specify seq #
of pkt being ACKed

Requires countdown timer

42

rdt3.o Sender

rdt_send(data) rdt_rcv(rcvpkt) &&
sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_sgnd(sndpkt) iSACK(rcvpkt, 1))
rdt_rcv(rcvpkt) \ start_timer A
A (YN
c;/xa(;tf];?)rm timeout
udt_send(sndpkt)
above .
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from

above
/

timeout

udt_send(sndpkt)

start_timer (_/
rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
iISACK(rcvpkt,0))

A

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

43

rdt3.o in Action

sender receiver

sender receiver

send pki0 Pk o
send pki0 %’ 0 PR T revpkio
[CV p ACK send ACKO
]

CK send ACKO
oV ACKO / o d
v -

send pki1 kt send pir| \%
\\ (loss)

rcv pktl

CK o

K

A
A send ACK
rcvACK frmeout
send pkt0 kt I u _
AC cFJIDACKO rcv pkil
sen ACK send ACK1

rcvACK]
send pki0 KT

d) operation with no loss rcv pki0
(@) op A}@/ send ACKO

(b) lost packet

44

rdt3.o in Action

sender receiver sender receiver
send pkio % oV piO send pki0 \M’ v pki0
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pkt1] kT send pkil 7
rcv pkil rcv pktl
ACK send ACK1 send ACK
(loss) X/
timeout
fimeout = pkt 4 resend pktl =
resend pki1 \rCV okil rcv kil
ACK (detect duplicate) rcVACK (detect duplicate)
send ACK1 send pkt0 send ACKT
il
ACK rev pki0 K o send ACKO
send ACKO

(c) lost ACK (d) premature timeout

45

Performance of rdt3.0

rdt3.0 works, but performance stinks
For 1 Gbps link, 15 ms prop. delay, 8ooo bit packet:

L 8000bits , How long it takes to push
== = 8microseconds packet out onto wire

"R 10°bps

U : utilization : fraction of time sender busy sending

sender®
U B L/R ~.008
sender pTTL.L /R ~30.008

1KB packet every 30 msec
33kB/sec throughput over 1 Gbps link
Network protocol limits use of physical resources!

= 0.00027

46

rdt3.0: Stop-and-Wait Operation

sender receiver

first packet bit transmitted, t = 0—
last packet bit transmitted, t=L / Ry

»

—first packet bit arrives
—last packet bit arrives, send
ACK

RTT

ACK arrives, send next,
packet, t =RTT+L/R

gy __ L/R 008

dor™ = = 0.00027
sender RTYT+L/R 30008

47

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets
Range of sequence numbers must be increased
Buffering at sender and/or receiver

data pqcke’r—»
||

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

Two generic forms of pipelined protocols:
go-Back-N and selective repeat

48

Pipelining: Increased Utilization

sender receiver

first packet bit transmitted, t=0—
last bit transmitted, t=L/ R &

— first packet bit arrives
—last packet bit arrives, send ACK

—last bit of 2" packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next |

packet,t =RTT+L/R _

................... Increase utilization
""""" N / by a factor of 3!

U __3"L/R :% = 0.0008

Sender'_ RTT + L / R 30.008

49

Pipelining Protocols

GO-BACK-N SELECTIVE REPEAT

Sender Sender
Up to N unACKed pkts in Up to N unACKed packets in
pipeline pipeline

Rece:ver ; tive ACK Receiver
Only sends cumulative ACKs ACKs individual pkts
Doesn't ACK packet if there’s Send
a gap ender

Sender Maintains timer for each
Has timer for oldest unACKed unACKed pkt
packet If timer expires: retransmit
If timer expires: retransmit all only unACKed packet

unACKed packets

50

Go-Back-N : Sender

k-bit sequence # in packet header
"Window"” of up to N, consecutive unACKed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n
Referred to as a “cumulative ACK”
May receive duplicate ACKs (see receiver)
Timer for oldest in-flight packet
timeout(n): retransmit packet n and all higher seq #
packets in window

send_base nexfsegnum dlready Usable. hof
i i ack’ed yet sent
TR TEC TN IRLIO000I0 | sertociea [rorosone

2 __ window size —%
N

51

GBN: Sender Extended FSM

rdt send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextsegnum,data,chksum)

udt_send(sndpkt[nextseqgnum])
if (base == nextsegnum)

start_timer
nextseqnum++
0.0,... }
A else
base=1 refuse_data(data)
nextseqnum=1 : : timeout
a start_timer
0 udt_send(sndpkt[base])
G udt_send(sndpkt[base+1])
rdt_rcv(rcvpkt) N
&4 corrupt(revpkt) U udt_send(sndpkt[nextseqnum-1])
A rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer 52

GBN: Receiver Extended FSM

default

udt_send(sndpkt) rdt_rcv(rcvpkt)
- () && notcurrupt(rcvpkt)

A T~a o - && hasseqnum(rcvpkt,expectedseqnum)
= -

expectedseqnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received pkt with highest
in-order seq #
May generate duplicate ACKs

Need only remember expectedseqnum
Out-of-order pkt:

Discard (don’t buffer) -> no receiver buffering! (reduces complexity)
Re-ACK pkt with highest in-order seq #

53

senaer

send pki0
send pki

send pkt2

send pkt3
(wait)

-

rcv ACKO
send pkt4

rcv ACK

—pkt2 tfimeout
send pkt2
send pkt3
send pkt4
send pktd

receiver

\b
\(,Iﬁo(ss)

N

send pkt5 \

\/b
ﬁhﬁhﬁ“‘nh“‘
\\\\\\\\\\\‘

/

rcv pkio
send ACKO

rcv pkrl
send ACK

rcv pkt3, discard
send ACK]

rcv pktd, discard
send ACK

rcv pktd, discard
seng ACK

rcv pkt2, deliver

send ACK?
rcv pkt3, deliver

send ACK3

54

Selective Repeat

Receiver individually acknowledges all
correctly received packets

Buffers packets, as needed, for eventual in-order
delivery to upper layer

Sender only resends packets for which ACK
was not received

Sender timer for each unACKed packets
Sender window

N consecutive seq #'s
Again limits seq #s of sent, unACKed packets

55

Selective Repeat:

Sender and Receiver windows

send_base nextsegnum already usable, not
i i ack’ed yet sent
00000 CREREEL TR L00000D | sotmeta) mnescne
y S window size —24
i N
(a) sender view of sequence numbers
acceptable

(buffered) but Ty :
already ack'ed (within window)

uuuuuuuuuumununnuuu pay M

t _ vindow size—4
N

out of order I

rcv_base

(b) receiver view of sequence numbers
56

Selective Repeat

SENDER

Data from above:

If next available seq # in
window, send pkt

timeout(n):

Resend pkt n, restart timer
ACK(n) in
[sendbase,sendbase+N]:

Mark pkt n as received

If nis smallest unACKed pkt,
advance window base to next
unACKed seq #

RECEIVER

pktnin

[rcvbase, rcvbase+N-1]
Send ACK(n)
Out-of-order: buffer

In-order: deliver (also deliver
buffered, in-order pkts),
advance window to next not-
yet-received pkt
pktnin
[rcvbase-N,rcvbase-1]
ACK(n) (this is a packet that was
previously received...)
Otherwise:

Ilgnore

57

Selective Repeat in Action

pktl sent

U -] L ﬁ—__kﬁﬁ__hkﬁ__hﬁﬁ__ﬂF pkt0 rcvd, delivered., ACKO sent

pktl =ent 011 2 3 4|56 7 89
0123f4567863 pktl rcvd, delivered. ACKl sent

pkt2 =ent 01(2 3 4 56 7 8 9

—I(0 12 3[456 789 X
(loss)

pkt3 sent, window full

0123456 7839

pkt3 rcvd, buffered, ACK3 sent
012 3 4 5(6 7 89

ACKO rcwd, pktd sent
Of1 2 3 456 7853 pktd rcvd, buffered, ACK4 sent

ACKl rcvd, pktS sent 0D 1/2 3 4 516 7 8 9
0 1|2 3 4 5|6 789

pktS rcvd, buffered., ACKS sent
0D 1(2 3 4 5|6 7 89
— pkt2 TIMEOUT, pkt2 resent -

012 3 4 5|6 789

pkt2 rcvd, pkt2.pkt3,pktd, pkts
delivered, ACKZ sent

ACK3 rcvd, nothing sent 012345k 7839
01|12 3 45|16 7889

58

Selective Repeat: sender window recelver wingow

(after receipt) (after receipt)

- ktO
Dllemma 30149 oft 23|01 2

ktl

12

0123012

Example 01230 1f2
seq#'s:0,1, 2,3
_) timeout
window size=3 retransmit pktg))kto
I 012|301 —Jp receive packet
R.eCEIVEI’ sges no with seq number O
difference in two
scenarios!
(a)
s it a retransmitted packet,
or a new packet? sender window receiver window
_ (after receipt) (after receipt)
Incorrectly passes duplicate oktO
data as new in (a) 01230172 o1 23012
012301 0123 0]1 2
Q: What relationship is 012J3012 01 2[3 012
ACK2
needed between seq # o3l 1
: : . 5
size and window size? o sk

receive packet

[1 I
A:Twice as many seq #'s with seq number 0

(b) 59

TCP —Transmission Control

Protocol

TC P . OVE I'Vi EW RFCs: 793, 1122, 1323, 2018, 2581

Point-to-point: Full duplex data:
One sender, one receiver Bi-directional data flow in
Reliable, in-order byte same connection
steam: MSS: maximum segment
No “"message boundaries” S1z€

Connection-oriented:

Handshaking (exchange of
control msgs) initializes
sender, receiver state before

data exchange
Flow controlled:

Pipelined:
TCP congestion and flow
control set window size

Send & receive buffers

application application I
I v application Sender will not overwhelm
door“““l‘_—_—" —‘————f‘—————'SOCket receiver
door
TCP TCP
send buffer receive buffer
I—b() [Segment] —» ()—+

61

TCP segment structure

URG: urgent data counting
(generally not used)™_|_SOurce port # dest port # / by bytes
ACK: ACK # . sequence number A/ of data
valid [—ackhawledgement number /| (notsegments!)
head |not
PSH: push datanow |ien used APLI__F Receive window
(generally not used)— | . # bytes
9 ynotuse cheeksum Urg data pointer . .
— receiver willing
RST, SYN, FIN:~ | Opti}%{(variable ength) to accept
connection estab
(setup, teardown
commands) L.
application
Internet/ data
checksum (variable length)

(asin UDP)

62

TCP seq. #'s and ACKs

Seq. #'s:
Byte stream
“number” of first byte
. in segment’s data Host ACKs
2 receipt of
Seq # of next byte A3, 022 'C, eEhoes
expected from other Seqz79">‘c back ‘C’
side
Cumulative ACK host ACKs
How does receiver handle receipt ,
out-of-order segments? of echoed ~60

\CI
TCP spec doesn't say,
- up to implementer

time

simple telnet scenario

63

TCP Round Trip Time and Timeout

How to set TCP timeout How can we estimate

value? RTT?

Should be longer than Measure time from

RTT (rouna-trip-time) segment transmission
But RTT varies... until ACK receipt

If it is too short Ignore retransmissions
Premature timeout Call this "SampleRTT”
Unnecessary SampleRTT will vary
retransmissions... We want a “smoother”

If it is too long estimated RTT
Slow reaction to segment Average several recent
loss measurements, notjust

current SampleRTT

64

TCP Round Trip Time and Timeout

Exponential weighted moving average
Influence of past sample decreases
exponentially fast

Typical value: a = 0.125

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT

65

Example RTT Estimation

350 +

300

250

RTT (milliseconds)

200 +

150

1 OO T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—o— SampleRTT —&— Estimated RTT

66

TCP Round Trip Time and Timeout

Setting the TCP timeout
EstimtedRTT plus “safety margin”

The larger the variation in EstimatedRTT, the
larger the safety margin

67

TCP Reliable Data Transfer

TCP creates rdt service Retransmissions are

on top of unreliable IP triggered by

Features of TCP timeout events
Pipelined segments duplicate ACKs
Cumulative ACKs Initially consider

TCP uses single simplified TCP sender:

retransmission timer Ignore duplicate ACKs

Ignore flow control

lgnore congestion
control

68

TCP Sender Events

Data received from app: Timeout:

Create segment with seq # Retransmit segment that

seq # is byte-stream caused timeout

number of first data byte in Restart timer

segment ACK received:

Start timer if not already If acknowledges

running (think of timer as previously unACKed

for oldest unACKed segments

segment) Update what is known to
be ACKed

Expiration interval:

TimeOutinterval Start timer if there are

outstanding segments

69

TCP Retransmission Scenarios

+«—timeout—

SendBase
=100

v

time

lost ACK scenario

=
O
(]
£
~
Th
(on
()]
(Up]
Sendbase T—
=100 s
SendBase o
=120 g
()]
(@)}
1
O
()]
(U]
SendBase _L
= 120 v
time

premature timeout scenario

TCP Retransmission Scenarios

Yies data

3 00

3 Seg=10, pCK

£ X

loss
_4720

SendBase p\C\(’l\Z
=120

v

v v
time

Cumulative ACK scenario

71

TCP ACK generation

[RFC 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that

partially or completely fills gap segment starts at lower end of gap

72

Fast Retransmit

Time-out period often
relatively long
Long delay before
resending lost packet
Detect lost segments via
duplicate ACKs.

Sender often sends many
segments back-to-back

If segment is lost, there
will likely be many
duplicate ACKs for that
segment

If sender receives 3
ACKs for same data, it
assumes that segment
after ACKed data was
lost:

Fast retransmit: resend
segment before timer
expires

73

triple

duplicate‘—‘{
ACKs

Host A

seq # xa
seq # x2
seq # x3
seq # X4
seq # X5

timeout

time

resend Seq X2

Host B

ACK xa

ACK xa

ACK xa
ACK xa

74

TCP Flow Control

Receive side of TCP
connection has a receive

buffer:
LS chnUl:gZZttl)nyfer TCP data | applicgtion
datagrams [space (inbuffen hrocess

Application process may be
slow at reading from buffer
What if buffer fills up?

Flow Control:

Prevents sender from
overflowing receiver’s
buffer by transmitting too
much, too fast

Speed matching service:
matching send rate to
receiving application's drain
rate

75

IP

(currently)

unused buffer Mﬂon

TCP data

datagrams | space

(in buffer) | process

<«— rwnd —
+—— RcvBuffer ——

Suppose TCP receiver
discards out-of-order
segments...

Unused buffer space
= rwnd

— RcvBuffer-[LastByteRcvd - LastByteRead]

TCP Flow Control: How 1t Works

Receiver notifies
sender of unused
buffer space

Segment header
includes the rwnd value

Sender limits # of
unACKed bytes to
rwnd

Guarantees receiver’s
buffer doesn’t overflow

76

TCP Connection Management

TCP sender and receiver
establish “connection”
before exchanging data
segments
Client initiates connection
Calls connect() to an IP/port

Server is contacted by client
Calls accept()

TCP variables initialized
while establishing
connection

Sequence #s

Buffers and flow control info
(e.g. RevWindow)

Three way handshake:
Step 1: client host sends
TCP SYN segment to
server

Specifies initial seq #

No data
Step 2: server host receives
SYN, replies with SYNACK
segment

Server allocates buffers

Specifies server initial seq. #
Step 3: client receives
SYNACK, replies with ACK
segment, which may
contain data

77

TCP Connection Management

Closing a connection: server |

client closes socket via close(): FIN
Step 1: system sends TCP

FIN control segment to server oK close
Step 2: receives FIN, FN

replies with ACK. Closes

. AC
connection, sends FIN. K

timed wait

closed ~

78

TCP Connection Management

Step 3: receives FIN, replies ||(;!) client server
with ACK. = —
close
Enters “timed wait” - will FIN
respond with ACK to received
FINs
Why not close immediately? ek close
Avoids potential problems if a
new socket (with same ports _ PN
and IPs) is created, and then
old delayed data is s ACK
delivered... _i
)
Step 4: . receives ACK. E

Connection closed closed ~

79

TCP Connection Mana

client application
initiates a TCP connection

!

W CLOSED
wait 30 seconds
send SYN
II
TIME_WAIT SYN_SENT
r Y
receive FIN
send ACK
y
FIN_WAIT_2 ESTABLISHED
‘ -
' client application TCP server ||feCYC|e
receive ACK initiates close connection
send nothing —— FIN_WAIT_1 send FIN] CLOSED server application
e ’ creates a listen socket
1 1 send nothing
TCP client lifecycle hooii
|‘
LAST_ACK LISTEN
A
send FIN
h 4
CLOSE_WAIT SYN_RCVD
A
receive ACK
\ send nothing
| ESTABLISHED
8o

Congestion Control

Principles and TCP Specifics

Principles of Congestion Control

What is congestion?

Informally: “too many sources sending too much
data too fast for network to handle”

Different from flow control!
Manifestations
Lost packets (buffer overflow at routers)
Long delays (queueing in router buffers)

Causes/costs of Congestion:

Scenario 1

Host A
Two senders, two e e M‘A
receivers i
One router, R | g
infinite buffers - / //_\%
No retransmission i T i e
Link BW of R L / ‘

Large delays

2T 5 when
(@)
5 [0 congested
< © Maximum
achievable
i throughput

83

Causes/costs of Congestion:

Scenario 2

One router, finite buffers
Sender retransmission of lost packet

HostA ;. : original data Mout
A
? " oridi N
& «f— Min:original data, plus 4

| retransmitted data

|
|
Host B finite shared output |

v T lin buffers/_qx_Y
i /L """ 3
. = / i

84

Causes/costs of Congestion:

Scenario 2

Case a: Sender only transmits when it knows buffer space is
available in router (unrealistic)
Case b: Sender retransmits only when packet is known to be lost

New cost of congestion: More sender work (retrans) for given

“goodput”

Case c: Assume sender also retransmits when a packet is delayed
(not lost), i.e. a premature timeout (bigger A,")

New cost of congestion: router output link carries multiple copies of

packet

R/2 _______________________ ;

)\‘Out
P
I
>

R/2

R/2

R/2

R/2

C. 8

Causes/costs of Congestion:

Scenario 3

Four senders Q: what happens as A

' IN
Multihop paths and 7\. increase?
Timeout/retransmit

Host A o 2
_ A\, - original data out

1_4/ M, . original data, plus Lo
i retransmitted data

finite shared
output lin B

86

Causes/costs of Congestion:

Scenario 3

C/2

KouT

Air

A new cost of congestion

When packet dropped, any upstream transmission
capacity used for that packet was wasted!

87

Congestion Control Approaches

Two broad approaches to congestion control:

End-end congestion Network-assisted
control: congestion control:

Routers provide
feedback to end systems
Single bit indicating
congestion (SNA,

No explicit feedback
from network

Congestion inferred

from end-system DECbit, TCP/IP ECN,
observed loss, delay ATM)
Approach taken by TCP Explicit rate sender

should send at

88

TCP Congestion Control

Goal: TCP sender should transmit as fast as
possible, but without congesting network
How do we find the rate just below
congestion level?

Decentralized approach —each TCP sender sets its
own rate, based on implicit feedback:

ACK indicates segment received (a good thing!)
Network not congested, so increase sending rate

Lost segment —assume loss is due to congested
network, so decrease sending rate

89

TCP Congestion Control: Bandwidth

Probing

Probing for bandwidth

Increase transmission rate on receipt of ACK, until
eventually loss occurs, then decrease transmission rate

ACKs being received,
so increase rate

X loss, so decrease rate

TCP’s
“sawtooth”
behavior

sending rate

time

How fast to increase or decrease?

90

TCP Congestion Control: Detalls

Sender limits rate by limiting number of
unACKed bytes “in pipeline”:
LastByteSent-LastByteAcked = cwnd
cwnd: differsfrom rwnd (how, why?)
sender limited by min (cwnd, rwnd)
cwnd

Roughly, bytes

rate = cwnd byt
RTT ytes/sec

cwnd (congestion window) is a function ofR
perceived network congestion

rwnd (receiver window) is explicitly
changed by receiver

TT |

ACK(s)

91

TCP Congestion Control Detalls

BAD: DATA LOSS

3 duplicate ACKs?

At least some segments
getting through (recall fast
retransmit)

Cut cwnd in half
Timeout?
No response from receiver

Cutcwndtoa
Very aggressive slowdown!

Slowstart phase
(connection start or after
timeout):

Increase cwnd exponentially
fast

Think name is backwards?
Think “avoiding a slow start”

Congestion avoidance
Increase cwnd linearly

92

TCP Slow Start Phase

When connection begins,
cwnd =1 MSS

Example: MSS = 500 bytes & 4
RTT = 200 msec s
!

Initial rate = 20 kbps
Available bandwidth may two segments
be >> MSS/RTT

Goal: quickly ramp up to

respectable rate

. . four S€gments
Increase rate exponentially until
first loss event or when threshold
reached
Double cwnd every RTT
Done by incrementing cwnd by time

1 for every ACK received v }

93

Leaving Slow Start via ssthresh

Slow start phase must end

If we keep exponentially increasing our bandwidth
usage, we're sure to cause congestion!

When do we stop increasing rapidly?
Based on a new value: ssthresh

Slow start threshold maintained by TCP

When cwnd >= ssthresh: transition from slowstart to
congestion avoidance phase

Starts off high at first
Set to ssthresh=cwnd/2 when data loss

OCCUrs
Remember (half of) TCP rate when congestion last occurred

94

TCP Congestion Avoidance Phase

New phase: when — AIMD

cwnd > ssthresh, ACKs: increase cwnd by

grow cwnd linearly 1 MSS per RTT: additive
Increase

Increase cwnd by 1 MSS
per RTT loss: cut ewnd in half

(non-timeout-detected
loss): multiplicative
decrease

Approach possible
congestion slower than in
slowstart

AIMD: Additive Increase
Multiplicative Decrease

95

TCP Congestion Control FSM:

Overview

cwnd > ssthresh

\

congestion

(7} loss:
> timeout

avoidance

/:;')/;? loss: new ACK loss:
> timeout 3dupACK

\
fast

loss: recovery
3dupACK

96

Summary: TCP Congestion Control

When cwnd < ssthresh, senderin
slow-start phase

Window grows exponentially.
When cwnd >= ssthresh, senderisin
congestion-avoidance phase

Window grows linearly.
When 3 duplicate ACKs received

ssthreshsetto cwnd/2

cwndsetto~ssthresh
When timeout occurs

ssthreshsettocwnd/2
cwnd set to 1 MSS.

97

TCP Fairness

fairness goal: if KTCP sessions share same bottleneck link
of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

connection 2

98

Why 1s TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughout increases
Multiplicative decrease decreases throughput proportionally

R equal bandwidth share

)

-]

o

e

S

Q loss: decrease window by factor of 2

= congestion avoidance: additive increase

a loss: decrease window by factor of 2

O congestion avoidance: additive increase
g

-

-

©)]

~ Total bandwidth of both

Connection 1 throughput R connections

99

Fairness

Fairness and UDP Fairness and parallel
TCP Connections

Nothing prevents app from
opening parallel

Multimedia apps often
do not use TCP

Do not want rate throttled connections between 2
by congestion control hosts.

Instead use UDP Web browsers do this
Pump audio/video at Example: link of rate R
constant rate supporting g connections;
Tolerate packet loss New app asks for 1 TCP, gets

rate R/10

UDP can “crowd out New app asks for 11 TCPs,
TCP gets > R/2!

100

Summary

User Datagram Protocol (UDP)

Characteristics

UDP is a connectionless datagram service.

There is no connection establishment: packets may show
up at any time.

UDP packets are self-contained.

UDP is unreliable:
No acknowledgements to indicate delivery of data.

Checksums cover the header, and only optionally cover
the data.

Contains no mechanism to detect missing or mis-
sequenced packets.

No mechanism for automatic retransmission.

No mechanism for flow control or congestion control
(sender can overrun receiver or network)

102

TCP Characteristics

TCP is connection-oriented.

3-way handshake used for connection setup

TCP provides a stream-of-bytes service

TCP is reliable:
Acknowledgements indicate delivery of data
Checksums are used to detect corrupted data
Sequence numbers detect missing, or mis-sequenced data
Corrupted data is retransmitted after a timeout
Mis-sequenced data is re-sequenced

(Window-based) Flow control prevents over-run of receiver
TCP uses congestion control to share network capacity
among users

103

