ECPE / COMP 177 Fall 2012

Computer Networking

Some slides from Kurose and Ross, *Computer Networking*, 5th Edition

- Instructor: Dr. Jeff Shafer
 - Email: jshafer at pacific dot edu
 - Office: Anderson 205
 - Office hours (posted on my door)
 - Wed: 1:00-3:00pm
 - Thur: 2:00-4:00pm
 - … plus whenever my office door is open

About Jeff

- Graduated from Rice University in May 2010
- Research areas
 - Cloud computing / storage architecture
 - Network SystemsArchitecture

Network Systems Architecture

- Specialized systems for networking
 - Network interfaces
 - Switches
 - Routers
 - · ...
- Typically a combination of software control and special-purpose hardware for packet processing
 - Network processors
 - Lightweight microprocessors with custom hardware

RiceNIC – Prototyping NICs

- Platform for research and education
- Commercial FPGA board with custom VHDL / C

- Full control over hardware and software
 - Reconfigurable FPGAs
 - Programmable Embedded processors
- Integrated software and hardware debugging features
- High performance Ethernet line rate
- Reference design is freely available, and in-use around the world

Overcome Network Switch Bottlenecks: Axon Network Device

- Datacenter network technology
- Replaces existing switches and routers
- Presents abstraction that entire network is one large Ethernet segment
 - Virtual machine migration
- Transparent source-routed Ethernet
 - Improves performance No spanning tree
 - Improves scalability
 - Stores state at network edge

- Lecture
 - When: Tuesday / Thursday, 10am-11:45am
 - Where: Chambers 115
- Lab
 - When: Tuesday, 2-4:50pm
 - Where: Baun 214
 - Lab start date: Tue Sept 4th
 - No lab today

Course websites:

- http://ecs-network.serv.pacific.edu/ecpe-177
 - Slides, syllabus, schedule, assignments, and more
- http://pacific.rsmart.com/
 - Sakai for assignment submission and emails only
 - Should auto-signup if enrolled in course

- Book
 - Computer Networking: A Top-Down Approach
 - 5th edition
 - Kurose and Ross
- Not required

Pre-Requisites

- Official pre-req
 - COMP 53 Data structures
 - High level language such as C
 - Basic data structures, arrays, pointers, functions, system calls, ...
 - ECPE 170 Computer Systems and Networks
- Unofficial pre-reqs
 - Number systems other than decimal (base-2, base-16)
 - Digital electronics
 - Basic computer skills
 - Windows at the command line
 - Linux at the command line

Course Format

- Homework 18%
 - Six assignments throughout semester
- Labs 12%
 - Ten labs in Baun 214
 - Applying theoretical concepts to real-world network equipment (Cisco routers and switches)
- Exams
 - Mid-term written exam 10%
 - Final written exam 10%
 - Lab practical exam 10%

Course Format

- Projects 40%
 - 3 programming projects
 - Individually or groups of 2
 - Past projects include web (HTTP) download client and web proxy server
 - Implementation language:C with standard Unix sockets
 - Implementation platform: Linux
- Tutorials will be provided
 - Writing / compiling / debugging programs on Linux

Survey

- Past Linux experience?
- Availability of laptops?
 - >3GB RAM, 2oGB+ free disk space
 - (Could also use a desktop, but a laptop would be useful for a few in-class project work days)
- Option 1 Use your laptop for course projects
- Option 2 Use a class server for projects

Questions?

Intro to Networking

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Circuit switching, packet switching, network structure
- Performance: Delay, loss and throughput in packet-switched networks
- Protocol layers, service models
- Networks under attack: security

Networks are Ubiquitous

- What good is a computer when the network is down?
 - I just keep hitting refresh on my web browser until something happens...
- What good is my iPhone with no AT&T / Verizon service?
- What good is a TV without on-demand Netflix streaming?

What's the Internet: High Level View

PC

server

wireless laptop

cellular handheld

access points wired links

Hosts (end systems)

- Millions of connected computing devices
- Running network apps

Communication links

- Fiber, copper, radio, satellite
- Transmission rate = bandwidth

Routers

 Forward packets (chunks of data) between links

What's the Internet: High Level View

Protocols

- Control sending and receiving of messages
- e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet standards
 - Who makes (some of) the protocols?
 - IETF: Internet Engineering Task Force
 - RFC: Request for comments
- Internet: "network of networks"
 - Loosely hierarchical
 - Public Internet versus private intranet

What's the Internet: Service View

- Communication infrastructure enables distributed applications
 - Web, VoIP, email, games, e-commerce, file sharing
- Communication services provided to apps
 - Reliable data delivery from source to destination, or
 - "Best effort" (unreliable) data delivery

What's a Protocol?

HUMAN PROTOCOLS

- "What's the time?"
- "I have a question"
- Introductions

NETWORK PROTOCOLS

- Machines rather than humans
- All communication activity in Internet governed by protocols
- Protocols (human and computer!) define
 - Format of message
 - Order of messages sent/received on network
 - Actions taken after sending/receiving message

What's a Protocol?

Intro to Networking

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Circuit switching, packet switching, network structure
- Performance: Delay, loss and throughput in packet-switched networks
- Protocol layers, service models
- Networks under attack: security

A Closer Look at Network Structure

Network edge

- Applications and hosts
- Access networks and physical media
 - Wired, wireless communication links
- Network core
 - Interconnected routers
 - Network of networks

Why is it Called the Edge?

The Network Edge

- End systems (hosts) at edge
 - Run application programs
- Two models of applications
 - Client/server
 - Peer-to-Peer (P2P)
 - What's the difference?
- Client/server model
 - Client host requests data from always-on server (e.g. web, email, ...)
- Peer-to-peer model
 - Minimal (or no) use of dedicated servers (e.g. Skype, BitTorrent)

Access Networks + Physical Links

- How do you connect hosts to the nearest edge router?
 - Residential access network
 - Institutional access networks (school, company)
 - Mobile access networks
- Concerns
 - Bandwidth (bits per second) of access network
 - Other concerns?
 - Shared or dedicated?
 - Cost?
 - Reliability?
 - Blocking / filtering?

Common Access Networks

- Digital Subscriber Line (DSL)
- Cable Modem
- Fiber to the home
- Ethernet
- Wireless LAN
- Wide-area wireless
- What do you use?

Intro to Networking

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Circuit switching, packet switching, network structure
- Performance: Delay, loss and throughput in packet-switched networks
- Protocol layers, service models
- Networks under attack: security

The Network Core

- Mesh of interconnected routers
- Fundamental question: how is data transferred through mesh?
 - Circuit switching
 - Dedicated circuit per call
 - "Classic" telephone network
 - Packet-switching:
 - Data sent thru mesh in discrete "chunks"
- Which method is used in the Internet?
 - Packet switching at the highest layer
 - Some circuit switching (older) underneath...

Network Core: Circuit Switching

- End-end resources reserved
 - No sharing
 - Fixed link bandwidth and switch capacity
 - Guaranteed performance
 - Link must be setup before use
- Network resources (e.g., bandwidth) divided into "pieces"
 - Pieces allocated to use
 - Piece idle if not used by user (no sharing)
 - Frequency division or time division

Circuit Switching: FDM and TDM

Network Core: Packet Switching

- Each end-end data stream divided into packets
 - User A, B packets share network resources
 - Each packet uses full link bandwidth
 - Resources used as needed

Bandwidth division into 'pieces"

Dedicated allocation

Resource reservation

- Resource contention
 - Aggregate resource demand can exceed amount available
 - Congestion: packets must wait in queue
- Store and forward: packets move one hop at a time
 - Receive complete packet before forwarding

Packet Switching: Statistical Multiplexing

- Sequence of A & B packets does not have fixed pattern, bandwidth shared on demand ⇒ statistical multiplexing.
- Contrast against circuit switching / time-division multiplexing
 - Each host gets same slot (fixed pattern)

Packet Switching: Store-and-Forward

- Takes L/R seconds to transmit (push out) packet of L bits on to link at R bps
- Store and forward: entire packet must arrive at router before it can be transmitted on next link
- Total delay to send message?
 - Delay = 3L/R
 - Assuming zero propagation delay

Example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- transmission delay = 15 sec

more on delay shortly ...

Packet Switching vs Circuit Switching

Packet switching allows more users to use network!

- 1 Mb/s link
- Each user:
 - 100 kb/s when "active"
 - Active 10% of time
- Circuit-switching:
 - 10 users max
- Packet switching:
 - With 35 users, probability > 10 active at same time is less than .0004

Packet Switching vs Circuit Switching

- Is packet switching perfect in all situations?
 - (Think about your own experiences)
- Great for bursty data
 - Resource sharing
 - Simpler, no call setup
- Less great during excessive congestion: packet delay / loss
 - Protocols needed for reliable data transfer and congestion control
- Some applications really want circuit-like behavior
 - Streaming video, streaming audio, interactive games, ...
 - If streaming video data arrives late, it is useless
 - Bandwidth / latency (delay) guarantees needed
 - Still an unsolved problem!

- Roughly hierarchical
- At center: "tier-1" ISPs with national/international coverage
 - Treat each other as equals
 - Examples: Owest, Sprint, NTT, L3, AT&T...

Tier-1 ISP: e.g., Sprint

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

- "Tier-3" ISPs and local ISPs
 - last hop ("access") network (closest to end systems)

A packet passes through many networks

Intro to Networking

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Circuit switching, packet switching, network structure
- Performance: Delay, loss and throughput in packet-switched networks
- Protocol layers, service models
- Networks under attack: security

How do Loss and Delay occur?

Packets queue in router buffers

- Packet arrival rate to link exceeds output link capacity
- Packets queue and wait for turn

Four Sources of Packet Delay

- 1. Node processing:
 - Check bit errors
 - Determine output link
 - Fixed time

- 2. Queueing
 - Time waiting at output link for transmission
 - Variable time: depends on congestion level of router

Four Sources of Packet Delay

- 3. Transmission delay:
 - L=packet length (bits)
 - R=link bandwidth (bps)
 - time to send bits into link= L/R
 - Time varies by packet size

- 4. Propagation delay:
 - d = length of physical link
 - s = propagation speed in medium (~2x10⁸ m/sec)
 - propagation delay = d/s

Nodal Delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- $d_{proc} = processing delay$
 - typically a few microsecs or less
- $d_{queue} = queuing delay$
 - depends on congestion
- d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- $d_{prop} = propagation delay$
 - a few microsecs to hundreds of msecs

Caravan Analogy

- Cars "propagate" at 100 km/hr
- Toll booth takes 12 sec to service car (transmission time)
- Car~bit; Caravan~packet
- How long until end of caravan reaches 2nd toll booth?

- Time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- Time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr) = 1 hr
- 62 minutes

Caravan Analogy (cont.)

- Cars now "propagate" at 1000 km/hr
- Toll booth now takes 1 min to service a car
- Will cars arrive to 2nd booth before all cars serviced at 1st booth?

- Yes! After 7 min, 1st car at 2nd booth and 3 cars still at 1st booth.
- 1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router!

Queueing Delay (revisited)

- R=link bandwidth (bps)
- L=packet length (bits)
- a=average packet arrival rate

traffic intensity = La/R

- La/R -> 1: delays become large
- La/R > 1: more "work" arriving than can be serviced, average delay infinite!

"Real" Internet Delays and Routes

- What do "real" Internet delay & loss look like?
- Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - Sends three packets that will reach router i on path towards destination
 - Router i will return packets to sender
 - Sender measures time between transmission and reply.

"Real" Internet Delays and Routes

traceroute: my laptop @ pacific to www.msu.ru

```
Three delay measurements
dhcp-10-10-207-20:~ shafer$ traceroute -a www.msu.ru
traceroute to www.msu.ru (193.232.113.151), 64 hors mak, 52 byte packets
   [ASO] 138.9.253.252 (138.9.253.252) 0.740 ms 0.741 ms 1.290 ms
   [AS0] 74.202.6.5 (74.202.6.5) 5.245 ms 15.006 ms 5.142 ms
   [AS4323] sjc1-pr1-xe-0-0-0-0.us.twtelecom.net (66.192.251.170) 6.414 ms 6.640 ms 17.283 ms
   [AS6453] if-10-0-0-56.core3.sqn-sanjose.as6453.net (209.58.116.50) 6.628 ms *
    [AS6453] if-13-0-0-55.core3.sqn-sanjose.as6453.net (66.198.97.9) 7.056 ms
                                                                                trans-oceanic
 5 [AS6453] if-9-0-0.mcore4.pdi-paloalto.as6453.net (216.6.33.6) 68.184 ms
    [AS6453] if-6-0-0-1145.mcore4.pdi-paloalto.as6453.net (216.6.86.45) 8.120 ms
                                                                                link
    [AS6453] if-9-0-0.mcore4.pdi-paloalto.as6453.net (216.6.33.6) 491.007 ms
 6 [AS11029] if-0-0-0-892.mcore3.njy-newark.as6453.net (209.58.124.25) 78.807 ms 109.426 ms
78.890 ms
7 [AS15706] if-4-0-0.core1.fv0-frankfurt.as6453.net (195.219.69.29) 167.206 ms 167.461 ms
167.002 ms
 8 [AS15706] if-0-0-0.core1.fr1-frankfurt.as6453.net (195.219.69.54) 171.256 ms 171.844 ms
174.118 ms
 9 [AS6453] if-7-1-0-1310.core1.stk-stockholm.as6453.net (195.219.131.45) 1180.587 ms 437.592 ms
586.125 ms
10 [AS6453] ix-4-0-1.core1.stk-stockholm.as6453.net (195.219.131.22) 200.475 ms 200.301 ms
201.106 ms
11 [AS3267] b57-1-qw.spb.runnet.ru (194.85.40.129) 216.199 ms 216.117 ms 214.311 ms
   [AS3267] bl16-1-gw.spb.runnet.ru (194.85.40.78) 214.723 ms 214.463 ms 214.494 ms
   [AS3267] bm18-1-qw.spb.runnet.ru (194.85.40.169) 214.608 ms 214.504 ms 214.493 ms
   [AS3267] tv11-1-gw.msk.runnet.ru (194.85.40.137) 214.260 ms 214.360 ms 214.478 ms
   [AS3267] m9-2-qw.msk.runnet.ru (194.85.40.53) 214.752 ms 214.496 ms 214.882 ms
   [AS3267] msu.msk.runnet.ru (194.190.255.234) 214.197 ms 214.907 ms 214.656 ms
16
17 [AS2848] 193.232.127.12 (193.232.127.12) 214.501 ms 214.166 ms 214.531 ms
   [AS2848] 193.232.113.151 (193.232.113.151) 214.864 ms !Z 214.666 ms !Z 214.522 ms !Z
```

Packet Loss

- Queue (aka buffer) preceding link in buffer has finite capacity
- Packet arriving to full queue dropped (aka lost)
- Lost packet may be retransmitted by previous node, by source end system, or **not at all!**

Throughput

- Throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput (more)

• $R_s < R_c$ What is average end-end throughput?

• R_s > R_c What is average end-end throughput?

Bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet Scenario

- 10 connections (fairly) share backbone bottleneck link at R bits/sec
- Per-connection endend throughput: min (R_c, R_s, R/10)
- In practice: R_c or R_s is often bottleneck

Intro to Networking

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Circuit switching, packet switching, network structure
- Performance: Delay, loss and throughput in packet-switched networks
- Protocol layers, service models
- Networks under attack: security

Layers of Protocols

- Networks are complex with many pieces
 - Hosts
 - Routers
 - Links of various media
 - Applications
 - Protocols
 - Hardware, software

- We divide network functions into "layers"
 - Easier to understand and discuss role of various devices

Organization of Air Travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

A series of steps

Layering of airline functionality

- Layers: Each layers implements a service
 - via its own internal-layer actions
 - relying on services provided by layer below

Why Layering?

- Human Understanding / Discussion
 - Dealing with complex systems
 - Explicit structure show relationship of between components
- Modularization eases maintenance and system updates
 - Can change how a layer is implemented without modifying other layers (change is transparent)
 - e.g., change in gate procedure doesn't affect rest of system

Internet Protocol Stack

- Application: supporting network applications
 - FTP, SMTP, HTTP
- Transport: process-process data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, routing protocols
- Link: data transfer between neighboring network elements
 - Ethernet
- Physical: bits "on the wire"

application

transport

network

link

physical

"Magic" of the Internet

- TCP: Reliable, in-order delivery
- IP: Un-reliable, order not guaranteed
- Magic
 - TCP is built on top of IP!
- Great clown analogy by Joel Spolsky
 http://www.joelonsoftware.com/articles/LeakyAbstractions.html

Clown Delivery

Need to move clowns from Broadway to Hollywood for a new job

Broadway, NYC

Clown Delivery – Problems?

Many cars, many clowns
Bad things are guaranteed to
happen to at least *some* of them

Clown Delivery – Problems?

People in Hollywood get frustrated – It's hard to make movies with clowns in this condition!

Clown Delivery - Solution

- New company
 - Hollywood Express
- Guarantees that all clowns
 - (1) Arrive
 - (2) In Order
 - (3) In Perfect Condition
- Mishap? Call and request clown's twin brother be sent immediately

UFO crash in Nevada blocks highway?

- Clowns re-routed via Arizona
 - Director never even hears about the UFO crash
 - Clowns arrive a little more slowly

Networking Abstraction

- TCP provides a similar reliable delivery service for IP
- Abstraction has its limits
 - Ethernet cable chewed through by cat?
 - No useful error message for that problem!
 - The abstraction is "leaky" – it couldn't save the user from learning about the chewed cable

Intro to Networking

- What is the Internet?
- Network edge
 - End systems, access networks, links
- Network core
 - Circuit switching, packet switching, network structure
- Performance: Delay, loss and throughput in packet-switched networks
- Protocol layers, service models
- Networks under attack: security

Network Security

- The field of network security is about:
 - How bad guys can attack computer networks
 - How we can defend networks against attacks
 - How to design architectures that are resistant to attacks
- Internet not originally designed with security in mind
 - Original vision: "a group of mutually trusting users attached to a transparent network"
 - Internet protocol designers playing "catch-up"
 - Security considerations in all layers!

Bad guys can put malware into hosts via Internet

- Malware can get in host from a virus, worm, or trojan horse.
- Spyware and malware can record keystrokes, web sites visited, upload info to collection site.
- Infected host can be enrolled in a botnet, used for spam and DDoS attacks.
- Malware is often self-replicating: from an infected host, seeks entry into other hosts

Bad guys can put malware into hosts via Internet

- Trojan horse
 - Hidden part of some otherwise useful software
 - Today often on a Web page
- Virus
 - Infection by receiving object (e.g., e-mail attachment) and user actively executes it
 - Self-replicating: propagate itself to other hosts, users

Worm:

- Infection by passively receiving object that gets itself executed
- Self- replicating: propagates to other hosts, users

Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)

Bad guys can attack servers and network infrastructure

- Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic
- Select target
- Break into hosts around the network
- 3. Send packets toward target from compromised hosts

The bad guys can sniff packets

Packet sniffing:

- Broadcast media (shared Ethernet, wireless)
- Promiscuous network interface reads/records all packets (including passwords, credit card numbers, etc) passing by

- Wireshark software used in labs is a free packet-sniffer
- Tools like this have legitimate and illegitimate uses

The bad guys can use false source addresses

IP spoofing: send packet with false source address

The bad guys can record and playback

- record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

Network Security

Much more in ECPE / COMP 178 in the spring

Course Organization

Two ways to organize course:

- Chose top-down
 - Faster start to programming projects

Introduction: Summary

- This week's brief overview
 - Internet overview
 - What's a protocol?
 - Network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
 - Performance: loss, delay, throughput
 - Layering, service models
 - Security
- Rest of the semester: more depth!