ELEC / COMP 177 – Fall 2011

Computer Networking → Ethernet

Project #2

Peer evaluations

Schedule

- Homework #5 Due Thursday, Nov 17th
- Homework #6 Presentation on security/ privacy
- Project #3 Due Tuesday, Dec 6th

Homework #6

- Looking for a change of pace...
- In-class oral presentations
 - Pick a single topic related to network <u>privacy</u> or <u>security</u>
 - Attacks? Defenses? Revolutionary new network designs?
 - Read about it and understand it
 - Present topic to your peers in this class
 - 4-6 slides, 8-9 minutes talking, 1 minute questions

Homework #6 Requirements

- Topic must be approved by instructor
 - Prevents overlap in topics
 - A quick email is fine
 - Due Tuesday, Nov 22nd
- Slides must be uploaded to Sakai
 - I'll assemble them into a single file on my laptop
 - Due Monday, Nov 28th by midnight
 - PowerPoint or PDF please...
- Present! Tuesday, Nov 29th (and Thursday?)

Project #3: Web Proxy

- Due: Tuesday, December 6th by 11:59pm
- What is a web proxy?
 - Makes HTTP requests on behalf of a client
- Why proxy?
 - Performance (from caching)
 - Content Filtering and Transformation
 - Block pages? (security)
 - Reformat pages? (for mobile devices)
 - Privacy harder to link HTTP request to a specific individual

Project #3 – Web Proxy

- Client (web browser) must be modified!
 - IP and port of proxy
 - Capabilities? HTTP/1.0, no pipelining
- Client sends out slightly different HTTP request
 - Without proxy:
 - GET /about HTTP/1.0
 - With proxy:
 - GET http://www.google.com/about HTTP/1.0
 - Now the proxy knows what the destination server is!

Project #3 – Web Proxy

- 1. Proxy is running on server and listening on a port
- 2. User enters URL in browser and hits enter
- Client connects and sends modified HTTP request to proxy, not to destination server
- 4. Proxy decodes URL
- 5. Proxy opens connection to destination server
- 6. Proxy sends *normal* HTTP request for object
- 7. Proxy receives response from destination server
- 8. Proxy forwards full response to client (Headers and data!)
- Proxy closes connection to destination server and client

Project #3 – Web Proxy

 Tip – Use netcat when debugging to listen on a port and see what your client is sending

```
jshafer:~> netcat -l -p 4567 -v
listening on [any] 4567 ...
connect to [127.0.0.1] from localhost [127.0.0.1] 49711
GET http://www.opensuse.org/ HTTP/1.0
Host: www.opensuse.org
User-Agent: Mozilla/5.0 (X11; U; Linux x86 64; en-US; rv:
1.9.2.10) Gecko/20100914 SUSE/3.6.10-0.3.1 Firefox/3.6.10
Accept: text/html,application/xhtml+xml,application/
xml; q=0.9, */*; q=0.8
Accept-Language: en-us, en; q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1, utf-8; q=0.7, *; q=0.7
Connection: close
Proxy-Connection: close
```

New physical layers

Scaling Ethernet

New Technology Needed

- No more single wire shared by all devices!
 - Too hard to increase to higher speeds
- Point-to-point networking
 - Still use MAC protocol and frame format
 - New network device: Ethernet repeater / hub
 - New physical layer
 - Straight-through cable (device ↔ hub) or crossover cable (device ↔ device)

New Physical Layers

- 100 Mb/s
 - 100Base-T4 (4 pairs copper, 100 meters max)
 - 100Base-TX (2 pairs high-quality copper, 100 meters max)
 - 100Base-FX (2 optical fibers)
 - ... and others
- 1000 Mb/s
 - 1000Base-T (4 pairs high-quality copper, 100 meters max)
 - 1000Base-FX (2 optical fibers)
 - ... and others
- Different physical layers (and encoding standards)
- Same frame format, error correction, and MAC protocol

Gigabit Ethernet – Same 4 Challenges

- Encoding
 - Encoding formats grow in sophistication as clock rate increases and stresses physical limits of copper/fiber media
 - 5-level Pulse Amplitude Modulation
 - 4-D 8-State Trellis Forward Error Correction Encoding
- Framing Same format
- Error Detection
 - CRC still used at high frame level
 - Encoding method has reserved illegal symbols that automatically indicate error (noise / corruption) if received
- Media Access Control
 - Point-to-point links remove need for CSMA / CD protocol (but it remains for backwards compatibility)

Full Duplex Ethernet

- Simultaneous two-way transmission (send and receive)
- No more collisions or retransmissions! (at least due to Ethernet)
- Only useful over point-to-point links, not shared bus (or hub topology)
 - Design enabled by pervasive deployment of switches

New network topologies

Scaling Ethernet

Traditional Ethernet Network

(10Base-5 or 10Base-2 - Shared Bus Architecture)

- Shared network limits throughput
- Frequent collisions reduce efficiency
- Poor Reliability Failure at one node can break shared link

Ethernet Star Topology

- Direct links instead of shared bus
- MAC protocol still operates as if Ethernet was a single wire
 - Collisions still possible
 - Network still shared
- Increase reliability from wire failure

Ethernet Hub - Operation

Problems with Ethernet Hub

- Security concerns with broadcasting
- Performance
 - Unnecessary broadcasts waste network capacity and cause congestion
 - Communication is serialized Independent connections between independent devices cannot occur in parallel
- Shared bus architecture limits maximum length of network
 - Due to MAC CSMA algorithm and signal propagation across entire network

Ethernet Switch

- New solution Bridges (aka Ethernet switches)
 - Allow multiple hub-based networks to be partitioned and interconnected
 - Reduces collisions
 - Allow parallel communication between independent devices
 - Allow full duplex communication between multiple pairs of devices

Ethernet Hub vs Switch

Ethernet Hub

A transmits to D
D replies to A

Ethernet Switch

(assume learning already occurred)

A transmits to D
D replies to A
E transmits to B,
and A to C

Combining Hubs and Switches

- As cost decreased, hubs have been removed entirely
 - Gigabit+ networks are always switched
 - No more collisions!

Switch Design

- Internal FIFOs on each port buffer incoming packet
- Forwarding options
 - Store-and-Forward
 - Buffer entire packet before sending it to output port
 - Can verify packet CRC
 - Cut-Through
 - Buffer only long enough to examine destination address and then immediately stream data through to output port
 - Will fall back to store-and-forward if output port is busy
 - Cannot validate packet By the time error is detected, it is too late!

Challenges for Ethernet Switch

- Forwarding Where does the next packet go?
- Migration What if devices move on the network?
- Congestion What if too much traffic is received?
- Preventing Loops How to avoid forwarding packets in a big loop?
- Configuration How to determine speed of every device connected to switch
- Isolation How to isolate devices from each other (i.e. student computers from faculty computers)

Challenge – Forwarding Packets

- Basic operation of Ethernet Switch
 - Examines header of each arriving frame
 - Learn that Ethernet SA is accessible from arriving port and update forwarding table
 - Examine Ethernet DA and search Forwarding Table on the switch
 - If in table, forward frame to the correct output port(s)
 - If not in table, broadcasts frame to all ports (except the one through which it arrived)

Switches - Learning Addresses

Switches – Forwarding Table

Forwarding Table Capacity

- At NewEgg in 2008:
 - \$300 Netgear gigabit switch 8000 devices
 - \$1800 3Com gigabit switch 16000 devices
 - \$7500 Cisco gigabit switch 12000 devices (but has 128MB DDR for packet buffering)
- Capacity is not infinite, but 12000+ is a lot of computers on a network without routing
 - Except, perhaps, for a large cluster computer...

Forwarding Table Maintenance

- How to remove stale entries from the table?
 (e.g. device leaves the network)
 - Entries expire if no communication from device within last epoch
 - 5 minute timer is default on Cisco switches

Forwarding Table Maintenance

- What if the table is full? What entry do we remove to make room for a new one?
 - Round-robin (oldest device)
 - Pros: Simple!
 - Cons: Oldest entry might be very active device
 - Least-Recently Used (e.g. device that last transmitted a packet a long time ago)
 - Pros: High effectiveness (device not likely to transmit again soon)
 - Cons: Complicated Switch must count # of packets per device, and sort/ search the table to determine LRU device
 - None Don't learn that device until a table entry expires normally.
 Until then, broadcast any packets destined to it
 - Pros: Simple. Ensures old (but active) devices are not evicted
 - Cons: If new devices is high traffic, entire network will suffer (due to broadcasts) until there is space in forwarding table
 - Used by Cisco switches

Challenge - Migration

- What if a network device (e.g. laptop computer) moves from one port to another? (on same switch)
 - Data is forwarded to wrong port until either:
 - Forwarding table entry expires
 - Device transmits a packet, and switch learns new port
- What if the device moves from one switch to another?
 - Have to wait for entry on old switch to expire (unless device happens to send a packet through that switch)

Challenge - Switch Congestion

- What happens if the switch is too busy?
 - Example: Traffic from 10 input ports all heading out single output port
- Easiest solution
 - Switch drops traffic as internal buffers overflow
 - Devices don't know and keep transmitting!
 - A higher level protocol such as TCP might eventually notice and throttle back...
- Can we do better?

Ethernet Flow Control

- Required in full-duplex point-to-point operation
- Receiving node (such as a switch) can send pause request to transmitting node if it is congested, and specify time to wait before resuming transmission
- Pause request is normal Ethernet frame with special field values
 - Type: ox 8808 (Control Protocol)
 - Destination MAC: ox o1-80-C2-00-00-01
 - Data: 4 bytes PAUSE (oxooo1) + length of time to sleep (in units of time to transmit 512 bits)
 - Followed by padding to minimum Ethernet frame size
- Flow control packets are never forwarded to other ports on a switch, or to upper protocol layers
 - Purely point-to-point across single wire

Broadcasting on Topology with Redundant Paths

Host F sends message to Host J

Problems with Loop Topology

- Broadcast Storm
 - Packets are forwarded forever
 - Ethernet has no timeto-live field
- Forwarding TableOscillation
 - Packets from host are received via multiple ports. Table is constantly updated

Topology Challenge – Loops!

- Can't we just avoid creating loops?
 - Redundant paths are useful for reliability
 - What if a loop is accidentally created? (Have you seen some of these wiring closets?)

Spanning Tree Protocol (IEEE 802.1D)

Principles

- Raw network is a mesh / graph
- Create a tree from this mesh
 - Tree is a subgraph that spans all the vertices (switches) without loops
- Disable all links not part of the tree prevents loops!
- Features
 - <u>Decentralized</u> Switches communicate among themselves via Bridge Protocol Data Units
 - Automatic No user configuration required
 - Fault tolerant Spanning tree will adapt if links fail (and can automatically use redundant links that were previously disabled)

Example Spanning Tree

Protocol operation:

- Pick a root. The root forwards over all its ports.
- For each segment, pick a designated switch that is closest to the root.
- All switches on a segment send packets towards the root via the designated switch.

Example Spanning Tree

Spanning Tree Issues

- Spanning Tree is not guaranteed to be a minimum spanning tree
 - Packets might take a longer path than necessary
 - Root switch might not be anywhere near "center" of network
- Solution?
 - Manual tweaking Administrators can adjust device IDs to force different root

Challenge – Switch Configuration

- Problem Each port on the switch might connect to a device running at different speed (10, 100, 1000Mbps) or duplex setting
- Do we want to configure each device manually?
 - Of course not.
- Solution: Auto-Negotiation
 - Upon power-up, each network device sends custom signals across link to other end announcing its capabilities
 - Each device listens and picks the highest mutually supported transmission mode
 - Format is backwards compatible down to 10Base-T, half duplex
- Modern switches have internal FIFOs that can buffer data between devices with varying performance capabilities
 - 1Gbps device → 100Mbps device flow control useful!

Challenge – Device Isolation

- Imagine I have a campus network, and want to isolate a few devices on a "private network". How do I do it?
 - Buy more switches?
 - Could get expensive...
 - Imagine the mess in the wiring closet...

Challenge – Device Isolation

- Better idea Make the switch more intelligent and have it provide device isolation
- Virtual LAN (VLAN) technology
 - Virtualizes the network Each network device on a VLAN communicates as if they were connected to the same physical network, even if they are not
 - Can create a virtual LAN composed of machines from around the world

VLAN Overview

- Controlled by network switch
 - Each port is mapped to a VLAN
 - Forwarding / broadcast is only allowed to other ports on the same VLAN (provides isolation)
 - Spanning Tree Protocol can be run independently over each VLAN
 - Might even have different topology!
- Joining VLAN How to assign devices?
 - Static Port is permanently mapped to VLAN
 - Dynamic Based on MAC address or user authentication (e.g. Cisco CleanAccess)

VLAN Operation

- Standardized format: IEEE 802.1Q
 - TCI stores VLAN ID, frame priority level, and format bits
 - CRC is recalculated

Bytes:

7	1	6	6	2	2	2	0-1500	0-46	4
Preamble	SFD	DA	SA	Туре	TCI	Туре	Data	Pad	CRC