ELEC/COMP 177 —Fall 2012

Computer Networking
=> Sockets API

Homework #3

How did it go?
What was easy?
What was hard?

Are VPN accounts created yet?

The Socket API for C

A collection of system calls to write a
networking program at user-level

APl is similar to Unix file I/O in many respects:
open, close, read, write.

Data written into socket on one host can be read out
of socket on other host

Difference: networking has notion of client and server
We're using the Clanguage, but most of these
terms and concepts translate directly into other
languages too

Sockets and the TCP/IP Suite

User Process User Process User Process | Application
——— {———————“—————- Socket API
TCP UbPp Transport
IP Network

Hardware Interface Link

Socket Parameters

A socket connection has 5 general parameters:

The protocol
Example: TCP, UDP etc.

The local and remote IP address
Example: 171.64.64.64
The local and remote port number
Need to determine to which process packets are delivered

Some ports are reserved (e.g. 8o for HTTP)
Root access required to listen on port numbers below 1024

Reference Links

Read this!

Beej's Guide to Network Programming
http://beej.us/quide/bgnet/
In-depth explanations of all of the functions

Complete example client and server with code

Your assignment shares much in common with the simple
stream client and server programs presented on this website.

Read this!

Commentary

Why are these functions and structures so
ugly looking / confusing?
Designed to be flexible

Support different forms of IP (IPvg, IPv6)

Support different types of application
requirements (TCP, UDP, or RAW)

Evolved over several decades (backwards
compatibility)

Socket Descriptor

Socket Descriptor: int sockfd;

Your process might have many sockets

Imagine a web server handling many clients
simultaneously

Need a way to identify each of them

Socket Configuration

How do we configure a socket?

How do we learn about how an existing
socket is configured, or who it is connected
to?

Answer: there are several key structures that
contain all the meta-data associated with
each socket

Structures in C

What is a structure?
Grouping of separate variables

// Define structure
struct account {
int account number;
char *first name;
char *last name;
float balance;

s

// Declare instance of the structure
struct account s;

// Access members
s.acount number = ...
s.balance = ... 10

Struct addrinfo

ookups (DNS)

struct addrinfo {

int ai flags;

int ali family;
int al socktype;
int al protocol;
size t ai addrlen;
struct sockaddr *ai:addr;

char *al canonname;

struct addrinfo *ail next;

//
//
//
//
//
//
//
//

Used to prepare (configure) a socket, plus
Used to store the results of a host name

ATl PASSIVE, AI CANONNAME, etc.
AF INET, AF INETo6, AF UNSPEC
SOCK STREAM, SOCK DGRAM

use 0 for "any”

size of ai addr in bytes
struct socEaddr_in or _1inb6
full canonical hostname
linked list, next node

11

Struct addrinfo

ai flags —Configuration Options
AI PASSIVE —A passivesocketisone that “listens”
only (exactly what a server does)

Technically, one end of the socket will be my local IP address,
and the other end will be any IP

... and many others ...

struct addrinfo {

int ai_flags; //
int ai family; //
int ai socktype; //
int ai protocol; //
size t ali addrlen; //
struct sockaddr *ai addr; //
char *ail canonname; //

struct addrinfo *ai next; //

AI PASSIVE, AI CANONNAME, etc.
AF INET, AF INETo6, AF UNSPEC
SOCK_STREAM, SOCK DGRAM

use 0 for "any”

size of ai addr in bytes
struct socEaddr_in or _1inb6
full canonical hostname
linked list, next node

12

Struct addrinfo

ai family —Whatversion of IP to use?

IPv4 —AF INET
IPv6 —AF INET6

Don't care—AI UNSPEC
The results of DNS will produce a IPv4 and/or IPv6 address

struct addrinfo {

int ai flags;

int ai family;
int al_socktype;
int al protocol;
size t ai addrlen;
struct sockaddr *ai:addr;

char *al canonname;

struct addrinfo *ai_next;

//
//
//
//
//
//
//
//

ATl PASSIVE, AI CANONNAME, etc.
AF INET, AF INET6, AF UNSPEC
SOCK_STREAM, SOCK DGRAM

use 0 for "any”

size of ai addr in bytes
struct socEaddr_in or _1inb6
full canonical hostname
linked list, next node

13

Struct addrinfo

al socktype —TCPorUDP?
SOCK STREAM —TCP sockets (streaming)
SOCK DGRAM -UDP sockets (datagrams)

SOCK RAW —No transport layer (controls exactly
what the NIC sends). Neat but hard!

struct addrinfo {

int ai_flags; // ATl PASSIVE, AI CANONNAME, etc.
int ai family; // AF INET, AF INET6, AF UNSPEC
int ai socktype; // SOCK_STREAM, SOCK DGRAM

int al protocol; // use 0 for "any”

size t al addrlen; // size of ai addr in bytes
struct sockaddr *ai addr; // struct sockaddr in or _iné
char *ai canonname; // full canonical hostname

struct addrinfo *ail next; // linked list, next node

14

Struct addrinfo

al protocol —Limitsincoming sockets to a

specific protocol

0 —Any protocol (still limited by SOCK STREAM)
IPPROTO TCP, IPPROTO UDP - Not often used

struct addrinfo {

int ai flags;

int ali family;
int al_socktype;
int ai_protocol;
size t ai addrlen;
struct sockaddr *ai:addr;

char *al canonname;

struct addrinfo *ai_next;

//
//
//
//
//
//
//
//

ATl PASSIVE, AI CANONNAME, etc.
AF INET, AF INETo6, AF UNSPEC
SOCK_STREAM, SOCK DGRAM

use 0 for "any”

size of ai addr in bytes
struct socEaddr_in or _1inb6
full canonical hostname
linked list, next node

15

Struct addrinfo

ai addrlen -Sizeofai addr inbytes
al addr described next...

struct addrinfo {

int ai_ flags; // AI_PASSIVE, AI CANONNAME, etc.
int ai family; // AF _INET, AF INET6, AF UNSPEC
int al socktype; // SOCK_STREAM, SOCK DGRAM

int al protocol; // use 0 for "any”

size t ai addrlen; // size of ai addr in bytes
struct sockaddr *ai addr; // struct sockaddr in or _iné
char *al canonname; // full canonical hostname

struct addrinfo *ai next; // linked list, next node

16

Struct addrinfo

al addr —A pointerto astructure that
contains more socket address info

Specifically details like port number, IP address
(v4 or ve), etc...

struct addrinfo {

int ai_flags; // ATl PASSIVE, AI CANONNAME, etc.
int ai family; // AF _INET, AF INET6, AF UNSPEC
int al socktype; // SOCK_STREAM, SOCK DGRAM

int al protocol; // use 0 for "any”

size t al addrlen; // size of ai addr in bytes
struct sockaddr *ai:addr; // struct sociaddr_in or iné6
char *al canonname; // full canonical hostname

struct addrinfo *ail next; // linked list, next node

17

Struct addrinfo

al cannonname

The “true” DNS name (“canonical name”)

DNS can have alias to other DNS entries

Usually NULL unless requested

struct addrinfo {

int ai flags; //
int ai family; //
int ai socktype; //
int ai protocol; //
size t al addrlen; //
struct sockaddr *ai:addr; //
char *ai canonname; //

struct addrinfo *ai_next;

//

ATl PASSIVE, AI CANONNAME, etc.
AF INET, AF INETo6, AF UNSPEC
SOCK_STREAM, SOCK DGRAM

use 0 for "any”

size of ai addr in bytes
struct socEaddr_in or _1inb6
full canonical hostname
linked list, next node

18

Struct addrinfo

al next —Pointerto the next struct
addrinfo

We can have a linked-list of many instances of this
structure, all in a row...

Useful in case DNS returns both IPv4 and IPv6

struct addrinfo {

int ai_flags; // ATl PASSIVE, AI CANONNAME, etc.
int ai family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK_STREAM, SOCK DGRAM

int al protocol; // use 0 for "any”

size t al addrlen; // size of ai addr in bytes
struct sockaddr *ai addr; // struct sockaddr in or _iné
char *ai canonname; // full canonical hostname

struct addrinfo *ai next; // linked list, next node

19

Struct sockaddr

Description of the socket
IP address?
Port?

Other details
Generic type: sockaddr

struct sockaddr {
unsigned short sa family; // address family, AF xxx
char sa datall4]; // 14 bytes of protocol address

20

Struct sockaddr

sockaddr is generic
Handles IP and other obscure protocols

You can cast it to an IPv4-specific structure to
easily access the underlying fields

What is casting?
struct sockaddr in {
short int sin family; // Address family, AF INET
unsigned short int sin port; // Port number
struct in addr sin addr; // Internet address
unsigned char sin zero[8]; // Same size as struct sockaddr

b

struct in addr {
uint32 t s addr; // that's a 32-bit int (4 bytes)

1 21

Struct sockaddr

sockaddr storageisgeneric for both
IPv4 and IPv6

It's big enough to hold either

It uses a consistent format

You can cast it to either the IPv4 or v6 type to
easily access the underlying fields (and just ignore
extra padding at the end that makes it generic)

Struct sockaddr

struct sockaddr in6 {

u intl6 t sin6 family;

u intl6 t sin6 port;

u 1int32 t sin6 flowinfo;
struct in6 addr sin6 addr;

u int32 t sin6 scope 1d;

b

struct in6 addr {
unsigned char s6 _addr[l6];

b

//
//
//
//
//

//

address family, AF INETOG

port number, Network Byte Order
IPve flow information

IPvo address

Scope 1D

IPvo address

23

Program Operation

Ok, so we have (boring) structures

How do we use them to create a socket?
Basic setup (for client or server)

Populate the structure with your socket settings

Call a function with the IP/port you want to
connect to or listen on

That function produces a new output structure
with all the right fields filled in

Then make a bunch of function calls

24

Sockets for Servers

Server Program Operation

Let’s take a simple connection-oriented (TCP)

server first
1. socket() create the socket descriptor
2. bind() associate the local address
3. listen() wait for incoming connections
from clients
4. accept() accept incoming connection

5. send(),recv() communicate with client
6. close() close the socket descriptor

26

Program Operation

Helper variables
int status; [/Testthisto detecterrors!

Declare variable for input structure
struct addrinfo hints;

Declare pointer to resulting structure
struct addrinfo *res;

Make sure the structure is empty
memset (&hints, 0, sizeof hints);

27

Server Program Operation

Populate fields with server settings

Don't care if IPv4 or IPv6
hints.al family = AF UNSPEC;

TCP streaming sockets
hints.ai socktype = SOCK STREAM;

Fill in my IP (to listen on)
hints.ai flags = AI PASSIVE;

28

Server — getaddrinfo()

Multi-purpose function
Inputs:

A hostname (i.e. www.google.com)
A service name (i.e. HTTP) or port number

Your “hints” structure of desired configuration
Output:

IP address (via DNS)
Port number (by looking up in a local config file)
A pointer to a fully-populated addrinfo structure

Server — getaddrinfo()

Function prototype

int getaddrinfo (
const char *node, // e.g. "www.example.com" or IP
const char *service, // e.g. "http" or port number
const struct addrinfo *hints,
struct addrinfo **res);

Function call for server

status = getaddrinfo (
NULL, "3490”, &hints, &res);
NULL: Fill in my IP (via AI_PASSIVE)
"3490" or any other valid port number

30

Server — getaddrinfo()

A non-zero result indicates an error
You should notify the user!

1f (status != 0) {
fprintf (stderr,
"getaddrinfo error: %s\n",
gal strerror (status));

ex1t (1) ;

Server — getaddrinfo()

What have we created with this function call?

A fully populated addrinfo structure with all the
socket configuration info (with IP addresses and
port numbers, not human-friendly host names or
service names)

We have not actually created a socket, or

listened on a port, or sent/received any data

Server — socket()

Let’s create the server socket now!
Function prototype

int socket (int domain, int type, int protocol);

Function call (using values from the structure
we just created)

int sockfd; // Store socket descriptor here!
sockfd = socket (res->ai1 family,

res->al socktype, B

res—->al protocol);

socket() returns -1 for error and updates
errno

33

Server — socket()

What good is this socket descriptor?
By itself, it does nothing

But we can use it as the basis for future
system calls

34

Sever - bind()

bind () associates the server socket with a
specific port on the local machine

The port specified in addrinfo structure
Function prototype
int bind(int sockfd,

struct sockaddr *my addr,
int addrlen);

Function call
status = bind(sockfd,

res—->al addr,
res—->al addrlen);

bind () returns-1forerrorand updates errno

35

Server - listen()

listen () listensforincoming messageson
the socket
Function prototype

int listen(int sockfd, int backlog);

backlog is number of incoming connections on queue
(probably limited by OS to ~20)

Function call

status = listen(sockfd, 10);
listen() returns -1 for error and updates errno

36

Server — accept()

accept () acknowledges an incoming connection
Function prototype

int accept(int sockfd,
struct sockaddr *addr,
socklen t *addrlen);

Function call

int
struct sockaddr Storage their addr;
socklen t
addr size = sizeof thelr_addr;
= accept (sockftd,
(struct sockaddr *)&their addr,
&) ;
accept () returns-1forerrorand updates errno

37

Server — accept()

Wait, what is happening here?
| give accept ():
The socket descriptor for the server

A pointer to an empty sockaddr storage structure
Generic for either IPv4 or IPv6

The size of that empty structure
accept () runsand gives me
A new socket descriptor that connects to the client

A populated sockaddr storage structure with details
on the incoming socket (the IP and port of host that is
connecting to me)

The size of the populated structure

38

Server Operation

The socket returned by accept () is not the same
socket that the server was listening on!

A new socket, bound to a random port, is
created to handle the connection

New socket should be closed when done with
communication

Initial socket remains open, can still accept more
connections

The initial socket never does any application-level
communication. It just serves to generate new sockets

Server Recap Thus Far

Someone from far far away will try to connect () to
your machine on a port that you are 1isten()ing on.
Their connection will be queued up waiting to be
accept()ed
You call accept () and you tell it to get the pending
connection
accept () will returnto you a brand new socket file
descriptor to use for this single connection!
You now have two socket file descriptors for the price
of one!

The original one is still listening for more new connections

The newly created one is finally ready to send () and
recv ()

40

send() and recv()

Send and receive data on connected, streaming
sockets (i.e. TCP)

We have different functions for unconnected /f UDP
sockets: sendto () and recvfrom ()

Function prototypes

int send(int sockfd,
const void *msg, int len, 1int flags);
msg is the data you want to send
len is the length of the data

int recwv(int sockfd, wvoid *buf,
int len, int flags);
buf is where you want the data to be copied to
len is the maximum length of the buffer data

41

send() and recv()

Send example:

char *msg = "Test Message";
int len, bytes sent;
len = strlen (msqg);

bytes sent =
send (sockfd client, msg, len, 0);
Receive example:

char buf[500];
int bytes recvd;
bytes recvd =
recv (sockfd client, buf, 500-1, 0);

42

Pitsfalls

send() and recv() are stream-oriented

Your messa%es are not independent, they're part of
the first-in, first-out stream

send() and recv() may only partially succeed

send() might only send 256 out of 512 bytes you
requested

recv() might only fill your 4kB buffer with 1kB of data
You (the poor, overworked programmer) are
responsible for repeatedly calling send() and
recv() until all your data is transferred

For a partial solution, see Beej's guide section 7.3

43

We're finished
Function prototype:
close (sockfd) ;

Don’t forget to also deallocate the linked list
generated by getaddrinfo() in the first step

freeaddrinfo (res) ;

44

Recap of Day 1

Server Functions — Recap

What does socket () do?

Create the socket descriptor
What does bind () do?

Assigns a local address/port to the socket
What does 1isten () do?

Configures socket to accept incoming connections
What does accept () do?

Accepts incoming connection (will block until connection)
What do send () /recv () do?

Communicate with client
What does close () do?

Close the socket descriptor

46

Return Values — Recap

Why do we have to check return values /
error codes for every single socket
function?

47

Send/Recv Pitfalls - Recap

Common pitfalls with TCP sockets

What is happening in these scenarios?
"My client program sent 100 bytes, but the server
program only got 5o.”

"My client program sent several small packets, but
the server program received one large packet.”
Ans: TCP is a stream protocol

The sender or receiver (or both!) can segment and
recombine the stream at arbitrary locations

From: http://tangentsoft.net/wskfaq/articles/effective-tcp.html (Good article to read!)

48

Send/Recv Pitfalls - Recap

Common pitfalls with TCP sockets

“How can | find out how many bytes are
waiting on a given socket, so | can set up a
receive buffer for the size of the packet?”

You don’t! Declare a reasonable fixed size buffer
when your program starts (say, 32kB) and always
receive data into that buffer

Then, copy data out of your buffer into the rest
of your program as needed

From: http://tangentsoft.net/wskfaa/articles/effective-tcp.html (Good article to read!)

49

Sockets for Clients

Client Program Operation

Let’s look at a simple connection-oriented
(TCP) client now

We don't need bind(), listen(), or accept()!

1. socket () create the socket descriptor

2. connect() connecttothe remote server.

3. send(),recv() communicate with the server

4. close() end communication by closing
socket descriptor

Client Program Operation

Helper variables
int status; [/Testthisto detecterrors!

Declare variable for input structure
struct addrinfo hints;

Declare pointer to resulting structure
struct addrinfo *res;

Make sure the structure is empty
memset (&hints, 0, sizeof hints);

52

Client Program Operation

Populate fields with client settings

Don't care if IPv4 or IPv6
hints.al family = AF UNSPEC;

TCP streaming sockets
hints.ai socktype = SOCK STREAM;

53

Client — socket()

A client can use socket() just like a server does
to create a new socket
Slightly different setup structure, though

getaddrinfo ("www.example.com",
"3490", &hints, &res);

Specify the hostname (or IP) and port (or service type) of
the remote machine to connect to

54

Client — connect()

Now that we have a socket on the client,
connect that socket to a remote system (where a
server is listening...)

Function prototype

int connect (int sockfd,
struct sockaddr *serv addr,
int addrlen);

Function call

connect (sockfd,
res—->al addr, res->al addrlen);

connect() returns -1 for error and updates
errno

55

Client — send()/recv()/close()

After that, it's all the same
send() data
recv() data
close() the socket when finished

56

Related Programming Topics

Whatis errno?

Common variable used by many system calls
Thread-safe, “global” (ish)
Holds a code representing what error has occurred

A list of all possible errors isin errno.h
Pre-built functions will decode errno
printf (“An error has occurred: %s\n",
strerror (errno)) ;
Tip! Mixing these two decoders up will produce
wrong error messages (which are worse then none at
allh

Use gai_strerror only when decoding status of
getaddrinfo

Use strerror when decoding status of all other functions

58

Other Useful Functions

Address conversion routines

Convert between system’s representation of IP
addresses and readable strings (e.g.
"171.64.64.64")
Lookup inet ntop () orinet pton|()

p = “printable”

n = “network”

getpeername () - Who are you?
gethostname () -Whoam I?

Libraries to Include

| needed to include the following libraries when
writing socket programs

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

60

Address and port byte-ordering

Address and port are stored as integers
u_short sin_port; (16 bit)
in_addr sin_addr; (32 bit)

Problem:

Different machines / OS’s order bytes differently in a word!
Little-endian: lower bytes come first (stored in lower memory addresses)
Big-endian: higher bytes come first

These machines may communicate with one another over the network

Big-Endian Little-Endian

machine machine W\

\1n 8
S8 i) A $(> 12.40.119.12

128 | 129 | 40 | 212 >)@“Eng 40 | 12

01

Solution: Network Byte-Ordering

Host Byte-Ordering

The byte ordering used by a host (big or little)
Network Byte-Ordering

The byte ordering used by the network

Always big-endian
Any words sent through the network should
be converted to network byte order prior to

transmission (and back to host byte order
once received)

Network Byte-Ordering

Should the socket perform the endianness
conversion automatically?

No - Not all data needs to be flipped

Imagine a stream of characters...
Given big-endian machines don’t need
conversion routines and little-endian
machines do, how do we avoid writing two
versions of code?

63

UNIX Byte-ordering Functions

uint32_t htonl(uint32_t x); uint16_t htons(u_short x);
uint32_t ntohl(uint32_t x); uint16_t ntohs(uint16_t x);

On big-endian machines, these routines do nothing!
On little-endian machines, they reverse the byte order

Big-Endian Little-Endian
machine _ machine
128 | 129 | 40 | 12 12 | 40 | 119 | 128
=)
128 | 119 | 40 12 » 128 | 119 | 40 12 9_7

Same code will work regardless of endian-ness of the
two machines

UNIX Byte-ordering Functions

htonl

Host to Network Order — Long (32 bits)
htons

Host to Network Order — Short (16 bits)

65

Structures and Packets

Goal: We want to build up structures in
memory that match our packet (protocol)
format

Example (for purposes of discussion):
Ethernet header

48-bit destination MAC

48-bit source MAC

16-bit type/length field

66

Structures and Packets

You might create a structure to make it easy to
access each individual field

struct ethernet header

{
uint8 t ether dhost[o];

uint8 t ether shost[o];
uintl6 t ether type;

}

How many bytes do you think this takes in
memory?

Who knows! (The perils of the optimizing compiler!)

67

Structures and Packets

Think back to ECPE 17o0...
Think about CPU cache

Think about accessing memory...
It is generally more efficient for the CPU to
access data that is aligned

Perhaps on word boundaries...

Perhaps on cache line boundaries...
48 bits (6 bytes) is not a word boundary on a
modern 64 bit (8 byte) CPU

68

Structures and Packets

The compiler may “optimize” your network
structure like this!

struct ethernet header

{
uint8 t ether dhost[6];
uint8 t ether shost[6];

uintlo t ether type;

69

Structures and Packets

Solution? Tell the compiler to stop doing that!

struct ethernet header

{
uint8 t ether dhost[o];

uint8 t ether shost[o];
uintl6o t ether type;

}

See:
http://gcc.gnu.org/onlinedocs/gcc-3.2.3/gcc/
Type-Attributes.html

70

Using Structures

Casting is your friend here!
Say somebody gives you a pointer to a bufferin
memory containing a packet

Yougetuint8 t *packet
Accessing that data byte-by-byte is tedious!
Solution?

Make a new pointer to your fancy structure

struct ethernet header *eth;

Assign the old pointers to the new pointer via a cast

eth = (struct ethernet header *) packet;

71

Using Structures

Now you can use the new pointer to a
structure to easily access individual parts of
the memory buffer

eth->ether_type

eth->ether_dhost[0]

eth->ether_dhost[1]

Pitfalls to Discuss Later

Otherissues beyond the scope of the first
programming exercise

Handling of partial sends() / recvs()

Multi-threaded applications (say, one thread per
socket/client)

73

Reference Links

Read this!

Beej's Guide to Network Programming
http://beej.us/quide/bgnet/
In-depth explanations of all of the functions

Complete example client and server with code

Your assignment shares much in common with the simple
stream client and server programs presented on this website.

Read this!

74

Project #1 Discussion

Start work today!
Due: Oct 20t (2.5 weeks)
Requirements

75

