.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Cache Memory

Schedule

This week
#” Chapter 6 — Memory systems

Next Tuesday

? Exam 2 — Tuesday, Nov 1st
Chapter 4
7 MARIE, etc...
Chapter 5

7 Instruction sets, memory addressing modes, etc...

3

4

Objectives

Starting Chapter 6 today

No longer will we treat memory as a big dumb array of
bytes!

Hierarchical memory organization

? How does each level of memory contribute to system
performance?

? How do we measure performance?

New concepts!

2 Cache memory and virtual memory
72 Memory segmentation and paging
? Address translation

Types of Memory

RAM versus ROM?
?2 RAM —Random access memory (read & write)

?” ROM — Read-only memory

Types of Memory

DRAM versus SRAM?
7 DRAM —Dynamic RAM
Cheap and simple!
Capacitors that slowly leak charge over time

Refresh every few milliseconds to preserve data

7 SRAM - Static RAM
Similar to D Flip-flops
No need for refresh
Fast / expensive (use for cache memory, registers, ...)

Memory Hierarchy

Goal as system designers:
Fast performance and low cost!

? Tradeoff: Faster memory is more expensive than slower
memory

To provide the best performance at the lowest cost,
memory is organized in a hierarchical fashion

2 Small, fast storage elements are kept in the CPU

? Larger, less fast main memory is accessed through the
data bus

? Largest, slowest, permanent storage (disks, etc...) is even
further from the CPU

The Memory Hierarchy

Smaller

More Costly

Access
Times

Less Costly

Memory Hierarchy

This chapter just focuses on the part of the memory hierarchy
that involves registers, cache, main memory, and virtual
memory

What is a register?
Storage locations available on the processor itself

7 Manually managed by the assembly programmer or
compiler

What is main memory? RAM

What is virtual memory?

? Extends the address space from RAM to the hard drive
7 Provides more space

Cache Memory

What is a cache?

? Speed up memory accesses by storing recently used
data closer to the CPU

? Closer that main memory — on the CPU itself!

Although cache is much smaller than main memory,
its access time is a fraction of that of main memory

Cache is automatically managed by the memory
system

Memory Hierarchy

CPU wishes to access data for an instruction

.

A N

Does the instruction say it is in a register or memory?
If register, go get it!

If in memory, send request to nearest memory (the
cache)

If not in cache, send request to main memory

If not in main memory, send request to virtual memory
(the disk)

Once the data is located and delivered to the CPU, it will
also be saved into cache memory for future access

(Cache) Hits versus Misses

Hit — When data is found at a given memory level.
72 Miss — When data is not found at a given level

Hit rate — Percentage of time data is found at a given memory
level.

2 Miss rate — Percentage of time data is not found
? Missrate =1 - hitrate

Hit time — Time required to access data at a given memory
level

Miss penalty — Time required to process a miss
72 Time that it takes to replace a block of memory, plus
72 Time it takes to deliver the data to the processor

Cache Locality

When data is loaded into a cache, we save more than
just the specific byte(s) requested

?2 Often, save neighboring 64 bytes or more!

Principle of locality — Once a byte is accessed, it is likely
that a nearby data element will be needed soon

There are three forms of locality:

? Temporal locality — Recently-accessed data elements
tend to be accessed again

Spatial locality - Accesses tend to cluster in memory

72 Sequential locality - Instructions tend to be accessed
sequentially (just a variant of Spatial locality)

15

Cache Design

Computer Systems and Networks Fall 2011

Cache Memory

First, divide main memory and cache memory into
blocks

? Cache block size = main memory block size
2 Example: Core i7: 64 bytes per cache block

If data is loaded into the cache, we load in the entire
block, even if we only needed a byte of it

?2 Allows us to take advantage of locality

Main memory is much larger than the cache

72 Thus, many blocks of main memory must map to a
single block of cache

Cache Memory

Main memory is usually accessed by address
72 i.e. “Give me the byte stored at address 0x2E3”

If the data is copied to the cache, it cannot keep the
same address

2 Remember, the cache is much smaller than main
memory!

We need a scheme to translate between a main
memory address and a cache location

? Engineers have devised several schemes...
? Direct map, fully associative map, set-associative map, ...

Cache Memory

Cache memory is typically accessed by content
?2 Often called content addressable memory

? This content is not data. Rather, it is (part of) the
original address of the data in main memory!

The original main memory address is divided into
fields, each with special meaning

Tag Block

Offset

<«—— Bits in Main Memory Address —————>

Cache Memory

Tag field — Distinguishes between multiple main
memory blocks that could map to the same cache

block

Block field — Which block # in the cache is this?

Offset field — Points to the desired data within the

block

Tag

Block

Offset

<«—— Bits in Main Memory Address —————>

20

Direct Mapped Cache

Computer Systems and Networks Fall 2011

Direct Mapped Cache

Simplest cache mapping scheme.

If the cache stores N blocks of cache

? Block X of main memory maps to
cache block Y = X mod N.

Thus, if we have 10 blocks of cache, block 7 of cache
could hold block 7 or 17 or 27 or 37 or ... of main
memory

Once a block of memory is copied into its slot in cache, a
valid bit is set for the cache block to let the system
know that the block contains valid data.

7 What would happen if there was no valid bit?

Direct Mapped Cache

Block Tag Data Valid
0 00000000 words A, B, C,... 1
1 11110101 words L, M, N,... 1
2 | e 0
I 0

Example of cache contents

7 Block 0 (tag 00000000)
Contains multiple words from main memory

? Block1 (tag 11110101)
Contains multiple words from memory

? Blocks 2 and 3 are not valid (yet)

Direct mapped cache
that stores N blocks

Block X of main
memory maps to
cache block

Y =X mod N

But only one block
can actually be

mapped to a cache
location at a time!

Direct Mapped Cache

Cache

BI<1)ck b \ BI;ck
Blgck :\\\ Blgck
Blgck :\\\\ Blgck
AN
Blgck :\\\\\\\ Blgck
o] OO\ Block
— NN\
Bkzck < \X\\\x\ Bkzck

Main Memory

Example 1 — Direct Mapped Cache

Example 1
72 Main memory — stores 4 blocks
Word addressable
?” Cache memory —stores 2 blocks
? Block size =4 words (don’t care how big a word is)

Mapping?
? Block 0 and 2 of main memory map to Block O of cache
? Blocks 1 and 3 of main memory map to Block 1 of cache

Let’s look at tag, block, and offset fields to see this
mapping...

Example 1 — Direct Mapped Cache

Determine the address format for mapping
2 Each block is 4 words

Thus, the offset field must contain 2 bits
(so we can select any word inside the block)

?A There are 2 blocks in the cache

Thus, the block field must contain 1 bit
(so we can select each possible block)

72 This leaves 1 bit for the tag (main memory address has 4
bits because there are a total of 24=16 words)

1 1 2

tag block offset

A
NN
¥

Example 1 — Direct Mapped Cache

Suppose we need to access
main memory address 3,
(0011 in binary)

2 Partition address

Thus, this main memory
address maps to cache
block O

Mapping shown (along with
the tag that is also stored
with the data)

The next slide illustrates
another mapping.

0 0 11
tag block offset

Main Memory Cache Tag

0 |
Block 0

Tag

0011

Block 1
Block 2
Block 3

Example 1 — Direct Mapped Cache

0 0 11 1 0 10
tag block offset tag block offset
ain Memory Cache Tag Main Memory Cache Tag
0 |
1]
BI
ock 0 Block 0
Tag Tag
0011 | |
1
Block Block 1
Block 2 Block 2 {010
Block 3 Block 3

Example 2 — Direct Mapped Cache

Example Configuration

A Main memory stores 214 bytes (byte-addressable)
A Cache memory with 16 blocks

? Block size = 8 bytes

Determine the address format for mapping

Example 2 — Direct Mapped Cache

Determine the address format for mapping

Each main memory address is 14 bits long
? Each block is 8 bytes long
Offset field is 3 bits wide (23 = 8) to select inside block

2 There are 16 blocks in the cache to select from
Block field is 4 bits wide (2% = 16)

72 All remaining bits (7 bits) make up the tag field.

7 bits 4 bits 3 bits

Tag Block Offset

< 14 bits >

Example 3 — Direct Mapped Cache

Example — Main memory addresses are divided into
72 12 bit tag field

9 bit block field

6 bit offset field

What do we know about the main memory and
cache?

N N N

Example 3 — Direct Mapped Cache

What do we know about the main memory and
cache?

2 The total main memory size is 2(12+3+6) = 227 pytes, or
128MB

The cache has 2° =512 blocks

Each block contains 2° = 64 bytes

The total cache size is 2°+6) = 215 = 32kB

Main memory contains 2(12+3) = 221 = 2097152 blocks

N N N D)

Direct Mapped Cache Summary

Direct mapped cache maps main memory blocks in
a modular fashion to cache blocks

The mapping depends on

2 The number of bits in the main memory address
(how many addresses exist in main memory)

2 The number of blocks in the cache
Which determines the size of the block field

2 How many addresses (bytes or words) are in a block
Which determines the size of the offset field

Cache Thrashing

Back to Example 2, assume a program generates
the address Ox1AA

In 14-bit binary, this number is: 000001 »®.®

7 7 bit tag, 4 bit block, and 3 bit offset fields

Tag Block Word
0000011
< 14 bits >

Words 1A8 through 1AF are loaded into the block

Cache Thrashing

Another way to view what happened:

?2 Blocks in main memory are contiguous addresses

When we load a block, we start with the byte in the
block whose offset (word) field contains all 0’s

The offset (word) field of the last byte contains all 1’s
Entire block is loaded into cache

7 0000011 0101000 =1A8

7 00000110101 111 =1AF

Tag Block Word

0000011 0101 010

< 14 bits >

Cache Thrashing

What if the program later reads from the address 0x1AB?
72 Cache hit!
? Datafound in block 0101 (with matching tag), word 011

Tag Block Word

0000011 0101 011

What if the program reads from the address 0x3AB?

7 0x3AB=00001110101011- A new tag number!

Cache miss!

Block 0101 (tag 0000011) is evicted (removed) from cache
Block 0101 (tag 0000111) is added to the cache

A NN

Cache Thrashing

Suppose a program generates a series of memory references
such as: O0x1AB, 0x3AB, 0x1AB, 0x3AB, ...

? The cache will continually evict and replace blocks
This is called “thrashing”

72 The theoretical advantage offered by the cache is lost in this
extreme case

Main disadvantage of direct mapped cache
Each main memory block can only go one place in the cache

Other (more sophisticated) cache mapping schemes prevent
this kind of thrashing

72 Topic for next class!

Exercise — Direct Mapped Cache

Exercise: Suppose you have a main memory with
128Kbytes and a direct-mapped cache made up of
256 32-byte blocks

7 What are the sizes of the tag, block and offset
fields?

7 How many block of main memory does the system
have?

AN

What is the total size of the cache in bytes?

N

How many memory blocks map to each cache
block?

Exercise — Direct Mapped Cache

Address layout

2 Tag: 4 bits (main memory addresses are 17 bits, and 13 are used by block/
offset, leaving 4 bits remaining)

7 Block: 8 bits (256 blocks in the cache, 278 = 256)
72 Offset: 5 bits (32 bytes per cache block, thus: 5 bits specify the correct byte)

Blocks in main memory: 4096

7 2717 bytes of main memory, 2.5 bytes per block, thus 2417 / 2A5 = 2712
blocks in main memory.

Total size of the cache: 8192 bytes
. 256 * 32 =2/8 * 275 =2/13

Main memory blocks mapped to each cache block: 16
7 4096 blocks in main memory / 256 blocks in the cache

