.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Instruction Set
Architecture

Schedule

Today

?” Chapter 5 — Closer look at instruction sets

Next Tuesday
A Continued...

Next Thursday
2 Continued...
2 Quiz4

Today’s Goals

What factors are involved in instruction set
architecture design?

Look at different instruction formats, operand
types, and memory access methods

72 Alot more possibilities than what MARIE offered in
Chapter 4

See the relationship between machine organization
and instruction formats

Recap —Common Terms

Instruction Set Architecture (ISA) - “Contract” between
processor vendor and programmers

Instructions?

Registers?

Addressing modes?

Memory architecture?

Interrupt and exception handling?
1/O?

A NN NN DN

Opcode — What instruction is being performed

Operand — What data does does that instruction need?
7 Memory address, register name, etc...

Instruction Formats

What makes instruction sets different?
Types of operations

Number of bits per instruction

Stack, accumulator, or register-based
Number of explicit operands per instruction
Operand location

A N N N N DN

Type and size of operands

Instruction Formats

How can we measure different instruction set
architectures? (in order to determine how “good”

they are)

7
7
7
7

Main memory space occupied by a program
Instruction complexity

Instruction length (in bits)

Total number of instructions in the instruction set

When designing an instruction set, you had better
make the right decisions, since you’ll be stuck with
the architecture for decades! (just ask Intel...)

Instruction Formats

Many questions to answer when designing an
instruction set:

? Instruction length?

Short? Long? Variable?

Shorter takes up less space in memory (good), but
also reduces the number of possible instructions and
the number of operands (bad)

Fixed length is easy to decode (good) but wastes
space in memory (bad)

Instruction Formats

Many questions to answer when designing an
instruction set:

2 Number of operands?
2 Number of addressable registers?
72 Memory organization?

Whether byte- or word addressable
? Addressing modes?

Choose any or all: direct, indirect or indexed

Endianness

Many questions to answer when designing an
instruction set:

? Byte ordering (or endianness)?

If we have a two-byte integer, how is that stored in
memory?

Endianness

Gulliver’s Travels

7 What is a little endian
computer system?

? Little-endian: lower bytes
come first (stored in lower
memory addresses)

72 Ex:Intel x86/x86-64

7 What is a big endian
computer system?

72 Higher bytes come first
72 Ex:IBM PowerPC

Computer Systems and Networks Fall 2011

Endianness

As an example, suppose we have the hexadecimal
number 0x12345678

A e bytes0x12, 0x34, 0x56,0x78

The big endian and little endian arrangements of
the bytes are shown below.

Lowest Address
Address > 00 01 10 11
Big Endian 12 34 56 78
Little Endian 78 56 34 12

Endianness

Seriously, why have two different ways to store data?

Big endian:
2 Is more natural.

72 The sign of the number can be determined by looking at the byte at
address offset O

? Strings and integers are stored in the same order

Little endian:
2 Makes it easier to place values on non-word boundaries.

2 Conversion from a 16-bit integer address to a 32-bit integer address
does not require any arithmetic

Take a 32-bit memory location with content 4A 00 00 00

Can read at the same address as either
72 8-bit (value = 4A), 16-bit (004A), 24-bit (00004A), or 32-bit (0000004A),

Endianness

Example: Howis 19714C2F stored in little and big
endian formats at address 1407

?2 Little endian
140,,=2F ¢
141,.=4C,
142,. =71,
143,.=19,,

72 Bigendian
140,,=19,,
141,.=71
142, =4C,,
143,.=2F,,

Endianness

How is DEADBEEF stored in little and big endian
formats at address 21C,.?
2 Little endian
21C, =EF,
21D,,=BE,,
21E,. =AD,,
21F, =DE,,
72 Bigendian
21C,=DE,,
21D,,=AD,,
21E,, =BE,,
21F, =EF,,

15

Processor Data Storage

Computer Systems and Networks Fall 2011

Instruction Formats

Next design questions: How will the CPU store data?

Three choices:
1. A stack architecture
2. An accumulator architecture

3. Ageneral purpose register architecture

Tradeoffs
? Simplicity (and cost) of hardware design
? Execution speed

2 Ease of use

Stack vs Accumulator vs Register

Stack architecture
? Instructions and operands are implicitly taken from the stack
?2 Stack cannot be accessed randomly

Accumulator architecture

? One operand of a binary operation is implicitly in the accumulator
? One operand is in memory, creating lots of bus traffic

General purpose register (GPR) architecture
7 Registers can be used instead of memory

? Faster than accumulator architecture

72 Efficient implementation for compilers

? Results in longer instructions

General Purpose Register Architectures

Most systems today are GPR systems

There are three types:

7 Memory-memory where two or three operands
may be in memory

7 Register-memory where at least one operand must
be in a register

? Load-store where no operands may be in memory

The number of operands and the number of
available registers has a direct affect on instruction
length

Stack Architecture

Stack machines use one - and zero-operand instructions.

LOAD and STORE instructions require a single memory
address operand

Other instructions use operands from the stack implicitly

PUSH and POP operations involve only the stack’s top
element

Binary instructions (e.g., ADD, MULT) use the top two
items on the stack

Stack Architecture

Stack architectures require us to think about
arithmetic expressions a little differently

We are accustomed to writing expressions using
infix notation, such as: Z=X+Y

Stack arithmetic requires that we use
postfix notation: Z = XY+
2 Thisis also called reverse Polish notation,

(somewhat) in honor of its Polish inventor, Jan
Lukasiewicz (1878 — 1956)

Postfix Notation

The principal advantage of postfix notation is that
parentheses are not used

? .. plusitis easy to evaluate on a stack machine

Infix expression
A Z=(XxY)+(WxU)

|dentical Postfix expression
A =XYxWUx+

Postfix Notation

Example: Convert the infix expression to postfix
A (2+3)-6/3

2 3+ - 6/3 The sum 2 + 3 in parentheses takes
precedence; we replace the term with
2 3 +.

Postfix Notation

Example: Convert the infix expression to postfix
A (2+3)-6/3

23+.g3/ Thedivision operator takes next
precedence; we replace 6/3 with
63/.

Postfix Notation

Example: Convert the infix expression to postfix
A (2+3)-6/3

23+@3/- Thequotient 6/3 is subtracted from
the sum of 2 + 3, so we move the -

operator to the end.

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-

Scanning the S 63| /]-
expression from left to
right, push operands

onto the stack, untilan |3
operator is found 2

—

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

Pop the two operands |- 5 |+ lgl3 /] -
and carry out the | $

operation indicated by
the operator. Push the
result back on the

stack.

27

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

/| -
Push operands until t
another operator is 3
found. 6

28

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

Carry out the 1
operation and
push the result.

Postfix Notation and Stacks

Example: Use a stack to evaluate the postfix
expression23+63/-:

Finding another 23 +1613 /-
operator, carry out the $
operation and push
the result.

The answer is at the
top of the stack.

Infix Expression and ISA

Let's see how to evaluate an infix expression
using different instruction formats

With a three-address ISA, (e.g.,mainframes),
the infix expression

/= X x Y + W x U

might look like this

2 MULT R1,X,Y
MULT R2,W,U
ADD Z7,R1,R2

Infix Expression and ISA

In a two-address ISA, (e.g., Intel, Motorola),
the infix expression

/= X x Y + W x U

might look like this

7 1LOAD R1,X

Note: Two-address

ISAs usually
MULT R1,Y require one
LOAD RZ,W operand to be a
MULT R2,U register
ADD R1,RZ

STORE Z,R1

Infix Expression and ISA

7 In a one-address ISA, like MARIE, the infix
expressionZz = X x Y + W x U

looks like this:

2 LOAD X Notice that as the
MULT Y instructions get shorter, the
STORE TEMP program gets longer...
LOAD W
MULT U Tradeoff — Hopefully these
ADD TEMP small instructions are faster

STORE Z than the large instructions!

Computer Systems and Networks Fall 2011

Postfix Expression and ISA

In a stack ISA, the postfix expression
/= X Y x W U x +

might look like this:
Would this program require

A PUSH X
PUSH Y more execution time than
MULT the corresponding (shorter)
PUSH W program that we saw in the
PUSH U 3-address ISA?
MULT
ADD

POP %

Postfix Expression and ISA

Implement the postfix Convert the postfix
expression expression to infix notation

Z = ABC+ x D -
in a stack ISA

Postfix Expression and ISA

Implement the postfix Convert the above postfix
expression expression to infix notation
Z=ABC+ xD - ? Build up a stack to help
in a stack ISA convert back to infix
7 PUSHA notation

PUSH B 2 (A*(B+C)-D)

PUSH C

ADD

MULT

PUSH D

SUBT

POP Z

36

Expanding Opcodes

Computer Systems and Networks Fall 2011

Expanding Opcodes

We have seen how instruction length is affected by
the number of operands supported by the ISA

In any instruction set, not all instructions require
the same number of operands

Operations that require no operands, such as
HALT, necessarily waste some space when fixed-
length instructions are used

One way to recover some of this space is to use
expanding opcodes

Expanding Opcodes

ISAs with expanding opcodes allow a varying
number of opcode bits, depending on the needs of

the instruction.

The “trick” is to select opcode values so that certain
bit patterns allow the opcodes to expand into what
would be operand bits in other instructions

Expanding Opcodes

A system has 16 registers and 4K of memory.
72 4 bitsis needed to access a register
72 12 bits is needed for a memory address

If the system is to have 16-bit instructions, we have two
choices of instruction format:

—— —— —— ——
Opcode Address 1 Address2 Address 3

———— = J
Opcode Address

Expanding Opcodes

If we allow the length of the opcode to vary, we
could create a very rich instruction set:

0000 R1 R2 R3
15 3-address codes

1110 R1 R2 R3

1111 66006 RIi B2
1NN PRI 6 1 R 2

14 2-address codes

31 1-address codes
T EI T T A1 8 R |

11111111 1111 0000
16 O-address codes

1111 1110 06006 RI1 }

kLAl a Bl i B b (T b Ll

Expanding Opcodes

A general expression for this machine, which
gives the maximum number of possible
opcodes of each type, is:

219 = a*2™ 4 p* 2% yc*2%4d
where
2 a = 3-register or 12-bit address opcodes,
2 b = 2-register opcodes,
2 c = 1-reqgister opcodes, and
2 d = 0O-register opcodes

Expanding Opcodes

Example: Given 8-bit instructions, is it possible to
allow the following to be encoded?

? 3instructions with two 3-bit operands
? 2 instructions with one 4-bit operand
?2 4 instructions with one 3-bit operand

We need:
3 x 23 x 23 =192 bit patterns for the 2 3-bit operands

2 x 2% = 32 bits patterns for the 4-bit operands
4 x 23 = 32 bits patterns for the 3-bit operands

Total: 256 bits patterns (which equals 28)

Expanding Opcodes

With a total of 256 bits required, we can exactly
encode our instruction set in 8 bits!

We need:
3 x 23 =192 bit patterns for the 3-bit operands

2 x 2% = 32 bits patterns for the 4-bit operands
4 x 23 = 32 bits patterns for the 3-bit operands.

Total: 256 bits patterns

One such encoding is shown on the next slide

Expanding Opcodes

00
- } 3 instructions with two

01 .
e — 3-bit operands
10 xxx xxxX

11 - escape opcode

1100 xxxx 2 instructions with one
1101 xxxx 4-bit operand

1110 - escape opcode

1111 - escape opcode

11100 xxx _ | |
11101 xxX 4 |n.struct|ons with one
11110 xXxX 3-bit operand

11111 xxx

Expanding Opcodes

The disadvantage of expanding opcodes is that it
makes decoding logic more difficult

? For a 3-address opcode, we only need to look at bits
IR[15:12]

? But for a 0-address opcode we (eventually) must
look at all 16 bits of IR

Expanding Opcodes

Example: Suppose we have a CPU with 12-bit long
instructions, and 16 registers

2 We can have two, one and zero register instructions

If there are 13 two-register instructions and 39
one-register instructions, how many zero-register
instructions can there be?

Expanding Opcodes

16 registers required 4 bits to represent.

In a 12-bit instruction, the opcode field is
? 4 bits wide for two-register instructions
8 bits wide for one-register instructions
72 12 bits wide for zero-register instructions

If there are 13 two-register instruction, there are 3
unused opcode combinations

This means there are 3*16 or 48 possible one-
register instructions

Expanding Opcodes

Since we have only 39 one-register instructions,
there are again nine unused opcodes

2 This means there is room for 9*16 or 144 zero-
address instructions

n=2"%—-(13%2"*439%2%) =144

Expanding Opcodes

EXERCISE

? Suppose we have a CPU with 12-bit long
instructions, and 16 registers

7 If there are 13 two-register instructions and 256

zero-register instructions, how many one-register
instructions can there be?

16 registers = 4 bits per register

Two-register instructions: 4 bits for opcode, 8 bits for
operand

Expanding Opcodes

16 registers = 4 bits per register

Two-register instructions
7 4 bits for opcode, 8 bits for operand

? 16 possible instructions, but we need 13
3 opcodes remaining
3 * 16 = 48 possible one-register instructions

Zero-register instructions
7 We need 256 of these instructions
? Last 4 bits unique (16 possibilities)
256 / 16 = 16 (so need 16 options left in one-register)

Expanding Opcodes

One-Register Instructions
7?2 8 bits for opcode, 4 bits for operand
? 48 possible 1-register instructions (see earlier)

72 But we need to save 16 as escape opcodes for the
zero-register instructions

So, 48-16=32 one-register instructions available

