.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

MARIE Simulator

Schedule

Today — More assembly programming

Next Tuesday
2 Meetin KH 203 (normal classroom)

? MARIE instruction decoding hardware
7 Plus Quiz 3!

Quiz 3 topic: Assembly programming!
| will give you Table 4.7 from the book...

Next Thursday — Begin Chapter 5
A Closer look at instruction sets

MARIE Programming

Writing code in assembly can be very intimidating at
first (or always)

High-level languages are easier to code in because
72 You're more comfortable with them

72 They take fewer steps

Treat the problem like a complier would
72 Think about how to code in another language, like C++

2 Convert each construct into a series of MARIE
instructions

MARIE Programming

What was easy about programming MARIE?
What was hard about programming MARIE?

What tips would you share to other beginning
assembly programmers?

Assembly Pitfall - Program Organization

The assembler and CPU do exactly what we tell it.

? However, that doesn’t always mean it does what we
intend!

You must be very explicit when organizing your
program

Assembly Pitfall - Program Organization

What did the programmer

intend for this code to do? T.OAD X
A Z=X+Y ADD Y
What does the program X, DEC ©
actually do? Y, DEC -3
Our variable X (0006) gets 7 DEC O

interpreted as a

JNS 6 instruction! STORE Z
HALT

Assembly Pitfall - Program Organization

Code should always jump

around any data T,OAD X
Compilers did this for you in ADD Y
COMP 51 JMP SKIP
? Automatically separate X, DEC ©
code and data Y, DEC -3
Z DEC O

Clever Tricks

Computer Systems and Networks Fall 2011

Clever Tricks — Memory Addresses

ORG 100 / Example 4.1
Load Addr /Load address of first number to be added
Store Next /Store this address is our Next pointer . .
Load Num /Load the number of items to be added Th|nk baCk to ﬁrst
Subt One /Decrement
Store Ctr /Store this value in Ctr to control looping MAR'E program
Loop, Load Sum /Load the Sum into AC
AddI Next /Add the value pointed to by location Next ()
Store Sum /Store this sum Example 4'1
Load Next /Load Next
Add One /Increment by one to point to next address .
Store Next /Store in our pointer Next ADDR Va r|ab|e
Load Ctr /Load the loop control variable
Subt One /Subtract one from the loop control variable
Store Ctr /Store this new value in loop control variable hOIdS the address
Skipcond 000 /If control variable < 0, skip next instruction
Jump Loop /Otherwise, go to Loop Of the element to
Halt /Terminate program
Addr, Hex 117 /Numbers to be summed start at location 117 be added
Next, Hex 0 /A pointer to the next number to add
Num, Dec 5 /The number of values to add y,) It's a p0|nter
Sum, Dec 0 /The sum
Ctr, Hex 0 /The loop control variable
One, Dec 1 /Used to increment and decrement by 1 z Value = OX117
Dec 10 /The values to be added together
Dec 15 ‘;\\‘\\\\\-
pec 29 This is location 117
Dec 25

Dec 30

Clever Tricks — Memory Addresses

What happens if the program changes?
? Say, we add a few instructions

We would have to find the new starting address of
the data, save its value in our assembly code, and
re-run the assembler

72 Annoying!
ying ADDR, HEX 125

Clever Tricks — Memory Addresses

Perfect world: The assembler lets us use a label and
fills in the address from the symbol table on pass 2

72 Unfortunately we don’t live in this perfect world!

2 Assembler doesn’t do this directly, but we can fool it
into doing something similarly useful

Solution takes advantage of the fact that the
instruction format always uses the lower 12 bits of
each instruction for the address

2 i.e. this solution works for MARIE, but not
necessarily other assembly languages

Clever Tricks — Memory Addresses

What happens when these 100
changes are made to the
example program?

Load Addr
101 Store Next

106 Addzi Next

111 Addr, JnS List
112 Next, Hex O

116 One, Dec 1
117 List, Dec 10

Clever Tricks — Memory Addresses

Recall the RTL for the ADDTI instruction:

MAR < X
MBR < M[MAR]
MAR <= MBR
MBR <= M[MAR]
AC < AC + MBR

72 The third operation truncates the opcode
MBR = 16 bits, but MAR = 12 bits
? Result: MAR ends up with only the address of LIST

Clever Tricks — Memory Addresses

This trick works with all instructions
72 JnS is safest since its opcode is O

? The resulting value placed in memory is only the 12-
bit address

Homework 4.33 Tips

Either use the JNS trick just shown, or write your
program in two passes

7
e

7

Pass 1: Write the code the traverses the linked list

Run the assembler and look at memory addresses
where it placed your program

Pass 2: Update the linked list memory addresses
based on the assembler listing file produced

1 2 o) \

Clever Tricks — Faking LOADI

MARIE has LOAD-Indirect (LOADI) and STORE-
Indirect (STOREI) instructions

? But clever programmers don’t need them!

How could | “emulate” the LOADI X instruction
using several non-indirect MARIE instructions?

CLEAR / Put 0 in AC
ADDI X / Add indirect value from Mem[Mem[X]]

Clever Tricks — Faking STORE!

How could | “emulate” the STOREI X instruction
using several non-indirect MARIE instructions?

2 Thisis harder!

Idea: Take advantage of the stored program concept
7 Instructions are just data

We need a sequence of instructions that construct a
STORE instruction with the desired address

This would be a good application of a subroutine

? Pass the value to store in AC, place the address in a
parameter variable

Clever Tricks — Faking STORE!

Equivalent code to STOREI X:

LOAD STROPCODE / Get opcode
ADD X / Combine addr
STORE STORETI / Save

STORETI, HEX 0 / Data: build instruction

/ here, then execute it
/ Program continues here...

STROPCODE, STORE 0 / Data: Just opcode
/ for store

19

Subroutines

Computer Systems and Networks Fall 2011

Subroutines

Result = addOne (inputl);

What do we need for a subroutine? (i.e. function)

7

N N 3N

Arguments to the function (i.e. input data)
Return value from the function

A way to jump to the function

A way to return from the function when finished

Subroutine Example

Load Data / get wvalue
Store Argl / store value as argument
Jns AddOne / call subroutine
Load Return / load subroutine return data
Output / print it!
Halt / terminate
Data, Dec 20 / original wvalue
/ ** Subroutine **
AddOne, Dec O / return address placed here
Load Argl / get argument
Add One / increment it
Store Return / save return value
JumpIl AddOne / return with value in a
Argl, Dec O / Empty: subroutine argument
Return, Dec 0 / Empty: subroutine return value

Subroutine Example

Write a subroutine which calculates the length of a
null-terminated ASCII string

7”2 What is an ASCII string?

72 What is null terminated?

Subroutine Example

Write a subroutine which calculates the length of a
null-terminated ASCII string

unsigned 1nt strlen(char *str)

{

unsigned int len = 0;
while (*str != 0)
{

str++;

len++;

}

return len;

Subroutine Example

This subroutine needs:

7

A

3N

A parameter which is the starting address of the
string

A variable to keep track of string length
A loop which terminates when a 0 is found

Inside the loop, increment the pointer and the
length count

To return the length variable

Lab Exercises

Pick one of these, and demonstrate it by the end of |lab

72 Need to provide a sample “main program” that includes
calling the subroutine

Write a subroutine which searches an array for a
particular value

72 Inputs: number, starting address of array, size of array
? Output: index of first match, -1 if not found

Write a subroutine which makes a copy of a null-
terminated string

7 Inputs: addresses of source and destination strings

