.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Introduction to
MARIE

Schedule

Today — Introduce new machine architecture — MARIE — and
assembly programming language

Next Tuesday
2 Continue with MARIE intro
A Exam review

Next Thursday — Exam 1
72 Chapter 2 (Data representations)
? Chapter 3 (Digital logic)

? Part of Chapter 4 (basic organization and memory systems. Nothing
on MARIE)

Following Tuesday — Meet in CTC 115 for assembly programming

Review Exercise — Memory Organization

Exercise: Build a 1M x 16 word-addressable main
memory using 128K x 4 RAM chips.

1. How many address bits are needed per RAM chip?
How many RAM chips are there per word?

How many RAM chips are necessary?

How many address bits are needed for all memory?

How many address bits would be needed if it were byte
addressable?

How many banks will there be?

What bank would contain address 47129, with (a) high-
order interleaving or (b) low-order interleaving?

i kW

Solution to Exercise

Each RAM chip has 128K locations: 27 * 210 = 17 bits

Each RAM chip location stores 4 bits, but we need 16:
1. 4 chips needed per word

Each RAM chip has 128K locations, but we need 1M locations:
1. 1M/128K = 8 (times 4 chips per word) = 32 RAM chips (8 rows, 4 columns)

Memory is 1M: 2720 = 20 bits for all of memory

Byte addressable adds 1 more bit here (to select either the lower 8 or upper 8 of the 16 bit long
word): 21 bits

8 banks of memory, where each bank has 4 chips

Address is 20 bits long, bank is upper 3 bits (243=8):
47129(16) =0100 0111 0001 0010 1001 (2)

With high-order interleaving, bank is #2

With low-order interleaving, bank is #1

MARIE

Simple model computer used in this class

MARIE

72 Machine Architecture that is Really Intuitive and
Easy

? Designed for education only

While this system is too simple to do anything
useful in the real world, a deep understanding of its
functions will enable you to comprehend system
architectures that are much more complex

MARIE Overview

The MARIE architecture has the following
characteristics:

72 Binary, two’s complement data representation

Stored program, fixed word length data and instructions
4K words of word-addressable main memory

16-bit data words

16-bit instructions

A N N 3N

4 for the opcode and 12 for the address
A 16-bit arithmetic logic unit (ALU)

Seven registers for control and data movement

N 3N

MARIE Registers (1-3)

Accumulator (AC)

7 16-bit register that holds a conditional operator

(e.g., "less than") or one operand of a two-operand
instruction.

Memory address register (MAR)

? 12-bit register that holds the memory address of an
instruction or the operand of an instruction.

Memory buffer register (MBR)

? 16-bit register that holds the data after its retrieval
from, or before its placement in memory.

MARIE Registers (4-7)

Program counter (PC)

? 12-bit register that holds the address of the next program
instruction to be executed

Instruction register (IR)

? 16-bit register that holds an instruction immediately
preceding its execution

Input register (InREG)
? 8-bit register that holds data read from an input device

Output register (OutREG)

?2 8-bit register that holds data that is ready for the output
device

MARIE Architecture

€

ALU Address O
(InReg)

MBR MAR >
Main
- = Memory
Control Unit
\. J
CPU Address 4095

L i P —

MARIE Data Path

Bus
—» Main Memory g

Common data bus > <
72 Links main memory and registers e N
?2 Each device identified by unique 5
number = >
. . . -\ 3
? Bus has control lines that identify MBR >

. . hd v
device used in operation t I | ALU >4
AC F———
Dedicated data paths / _/ il

A Permits data transfer between > INREG >
accumulator (AC), memory buffer .
register (MBR), and ALU without using —>{ OutREG >

main data bus

16-bit bus

11

.

MARIE Instruction Set Architecture

Computer Systems and Networks Fall 2011

MARIE ISA

Instruction Set Architecture (ISA) is the interface
between hardware and software

? Specifies the format of processor instructions

? Specifies the primitive operations the processor can
perform

Real ISAs?

72 Hundreds of different instructions for processing data
and controlling program execution

MARIE ISA?
72 Only thirteen instructions

13

MARIE Instructions (Basic)

Instruction # See table

[. | :) 4.7 in
Binary Hex Instruction Meaning book!

0001 1 LOAD X Load contents of address X into AC

0010 2 STORE X Store contents of AC at address X

0011 3 ADD X Add contents of address X to AC

0100 4 SUBT X Subtract contents of address X from AC

0101 5 INPUT Input value from keyboard into AC

0110 6 OUTPUT Output value in AC to display

0111 7 HALT Terminate program

1000 8 SKIPCOND Skip next instruction on condition based on AC value
1001 9 JUMP X Load value of X into PC

... plus a few more instructions we’ll add later...

MARIE Instructions

How do we format these instructions in computer

memory?
Opcode Address
] 1 | I N T R
Bit Bit Bit Bit
19 12 11 0
Two fields

? Opcode (4 bits) — Operation code
? Address (12 bits) — Address to operate to/from

MARIE Instruction Example - LOAD

Bit pattern for a LOAD instruction
? Could be saved in memory or IR (if executing right now)

opcode address
I | I

0/0/|0|1|0/0(0|O|O|O|O|O|O|O1|1

1514 13121110 9 8 7 6 5 4 3 2 1 O

Decode this instruction
? Opcodeis1—-LOAD instruction
2 Address is 3 — Data will be loaded from here

What is the Hex representation of this instruction?

MARIE Instruction Example - SKIPCOND

Bit pattern for a SKIPCOND instruction
2 Could be saved in memory or IR (if executing right now)

opcode address
I | I

1/0/0/0/1/0/O0O(O0(O[|O(O0(O0|O(0O|0]|O

1514 13121110 9 8 7 6 &5 4 3 2 1 0

Decode this instruction

2 Opcodeis 8 = SKIPCOND instruction

72 “Address” is not really an address here!
Upper two “address” bits are 10

Translation: The next instruction will be skipped if the value in the
AC is greater than zero

17

MARIE RTL Design

Computer Systems and Networks Fall 2011

MARIE RTL

Each instruction can be somewhat complicated

7 Lots of individual processor elements must be precisely
coordinated / scheduled

Each ISA instructions is built from a sequence of smaller
instructions called micro-operations (micro-ops)

7 Exact sequence of micro-ops is described to
programmers / designers by a register transfer language
(RTL)

MARIE RTL notation
2 MI[X] —indicates actual data stored in memory location X

? < -indicates transfer of bytes to a register or memory
location

MARIE RTL

RTL for LOAD X instruction:

MAR < X
MBR < M[MAR]
AC < MBR

RTL for ADD X instruction:

MAR < X
MBR < M[MAR]
AC < AC + MBR

MARIE RTL

SKIPCOND skips the next instruction according to
the value of the AC

RTL for this instruction is complex!

If IR[11 - 10] = 00 then
If AC << 0 then PC <« PC + 1
else If IR[1l1l - 10] = 01 then
If AC =0 then PC < PC + 1
else If IR[1l1l - 10] = 11 then
If AC > 0 then PC <« PC + 1

21

MARIE Instruction Processing

Computer Systems and Networks Fall 2011

Instruction Processing

How does a computer run a program?
7 Fetch-decode-execute cycle

Steps
1. Fetch an instruction from memory and place it into
the IR

2. Decode instruction in IR to determine what needs to
be done next.

If a memory value (operand) is involved in the
operation, it is retrieved and placed into the MBR

3. Execute instruction (now that all data is ready)

Instruction Processing

Copy the PC to
the MAR

Y

Copy the contents of
memory at address
MAR to IR;
Increment PC by 1

v

Decode the instruction and
place bits IR[11-0] in
MAR

Instruction
requires
operand?

Execute the
instruction

Copy the contents of
memory at address
MAR to MBR

Interrupting the Cycle

The fetch-decode-execute cycle can be interrupted

Interrupts occur when:
?” A user break (e.,g., Control+C) is issued

?A 1/0is requested by the user or a program
A critical error occurs

Interrupts can be caused by hardware or software.
? Software interrupts are also called traps

Interrupting the Cycle

Interrupt processing adds one step to the fetch-
decode-execute cycle

Has an
interrupt been
issued?

Perform fetch-
decode-execute
cycle

Process the
interrupt

> <

Interrupt Processing

Interrupt Place ISR
signa —» address
detected in PC

v v

S (A
ave
variables and ?galgcé‘
registers N p
Perform work
wlr specific to
nglérggsl iSnR interrupt
interrupt Restore
vector table saved registers &
and variables
v
Branch to
top of

fetch-decode-
execute cycle

Interrupt Processing

For general-purpose systems, it is common to
disable all interrupts during the time in which an
interrupt is being processed

?2 Set abitin the flags register

Interrupts that are ignored in this case are called
maskable

Nonmaskable interrupts are those interrupts that
must be processed in order to keep the systemin a
stable condition

Instruction Processing

Interrupts are very useful in processing I/0

A Must modern I/O is interrupt driven (but
complicated!)

2 Will explore this further in Chapter 7

MARIE is simplified and only uses basic
programmed 1/O

? All output is placed in an output register (OutREG)

? CPU polls the input register (INREG) until input is
sensed, and then input is copied into the
accumulator

29

MARIE Programming

Computer Systems and Networks Fall 2011

A Simple Program

Consider this simple MARIE program

Address | Instruction Bb:,l';?nr% ;ozzr:‘tas;:f H::‘ ﬁg::fz"ryts
100 Load 104 0001000100000100 1104
101 Add 105 0011000100000101 3105
102 Store 106 | 0100000100000110 4106
103 Halt 0111000000000000 7000
104 0023 0000000000100011 0023
105 FFES 1111111111101001 FFES
106 0000 0000000000000000 0000

A Simple Program

What happens inside the computer when our
program runs?

72 Instruction 1: LOAD 104
Step RTN PC IR MAR | MBR AC
(initial values) o1, 7] BSOCERE ot | (T a
Fetch MAR<€—PC 100 |------ B o i i) o
IR €<——M[MAR] 100 | 1104 | 100 |------)------
g S e - I A 101 | 1104 | 100 |------]------
Decode MAR€— IR[11-0] 101 | 1104 [EgB&Y ------] ------
(Decode IR[15-12]1)) 101 | 1104] 104 |------]------
Get operand MBR €«— M [MAR] 101 | 1104 | 104 | 0023 |------
Execute AC €——MBR 101 1104 104 0023 0023

A Simple Program

Instruction 2: ADD 105

Step RTN PC IR MAR | MBR AC
(initial values) 101 | 1104 | 104 0023 | 0023
Fetch MAR €— PC 101 | 1104 | 101 0023 | 0023

IR €——M[MAR] 101 | 3105 | 101 0023 | 0023
PCS———PC + 1 102 | 3105 | 101 0023 | 0023
Decode MAR€— IR[11-0] 102 | 3105 | 105 | 0023 | 0023
(Decode IR[15-12])] 102 | 3105 | 105 0023 | 0023
Get operand MBR €— M [MAR] 102 3105 105 FFEQ9 0023
Execute AC €«<——AC + MBR 102 | 3105 | 105 | FFE9 | 000C

