

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

State Machines & Karnaugh Maps

Upcoming Events

- Homework 5 Due Tuesday
 - Paper submissions accepted for this assignment (since it involves drawing Karnaugh Maps...)

Upcoming Events

Quiz 2 - Tuesday

- **₹** Topics may or may not include:
 - Simplifying Boolean expressions with identities?
 - Sum-of-products or product-of-sum form?
 - Converting between a truth table and a circuit diagram (with logic gates)?
 - Common combinational circuits: decoders, multiplexers?
 - Basic operation of these devices, i.e. inputs and outputs
 - Sequential circuits: SR, JK, D flip-flops?
 - Basic operation of these devices, i.e. inputs and outputs

Recap from Last Class

- Why do real hardware devices used NAND / NOR gates instead of AND / OR / NOT gates?
 - These are "universal" gates any function can be made using only NAND or only NOR gates
 - Simplifies manufacturing to use the same gate type
- What is the difference between combinational and sequential circuits?
 - **⊘** Combinational output is based on input only
 - Sequential output is based on input and current output (or "state")

Recap from Last Class

- What is the difference between a half-adder and a full-adder?
 - → Half adder adds two inputs (x, y) and produces sum and carry-out
 - **7 Full adder** adds three inputs (x, y, carry-in) and produces sum and carry-out
 - We build it out of two half-adders!

Recap from Last Class

What are the outputs of these common flip-flops?

S F	ł	Q(t+1)
0 0)	Q(t) (no change)
0 1	.	0 (reset to 0)
1 0)	1 (set to 1)
1 1	-	undefined

J	K	Q(t+1)
0	0	Q(t) (no change)
0	1	0 (reset to 0)
1	0	1 (set to 1)
1	1	Q(t)

D	Q(t+1)
0 1	0 1

Discussion

- Engineering lab equipment and facilities
 - Partially paid for from your lab fee \$\$
 - Suggestions for improvement?

State Machines

State Machines

- How do we design complicated sequential systems?
 - **Finite State Machine (FSM)**
 - In visual form
 - A set of nodes that hold the states of the machine
 - A set of arcs that connect the states
- Two different types of state machines: Moore and Mealy
 - Both produce systems that produce the same output
 - Differ only in how the output of the machines are expressed
- Moore: place outputs on each node
- Mealy: present outputs on the transitions

JK Flip-Flop in State Machine Form

Moore FSM

Mealy FSM

J K Q(t+1)

0 0 Q(t) (no change)
0 1 0 (reset to 0)
1 0 1 (set to 1)
1 1 Q(t)

Computer Systems and Networks

Different Implementations

Although the behavior of Moore and Mealy machines is identical, their implementations differ:

Different Implementations

Although the behavior of Moore and Mealy machines is identical, their implementations differ:

Algorithmic State Machine

- Moore and Mealy machines are challenging to draw for complex designs
 - An interaction of numerous signals is required to advance a machine from one state to the next
- Alternate approach: Algorithmic State Machine
 - A block diagram approach to describing digital systems

Algorithmic State Machine

State Block

Algorithmic State Machine – Microwave Oven

Sequential Circuit Applications

- When do I use sequential circuits?
 - → Whenever the application is "stateful"
 - The next state of the machine depends on the current state of the machine and the input
- Stateful applications requires both combinational and sequential logic
- Examples: Register, Memory, Counters, ...

Sequential Circuits – Register

This illustration shows a 4-bit register consisting of D flip-flops. You will usually see its block diagram (below) instead.

Sequential Circuits – Group of Registers

Sequential Circuits – Binary Counter

- Binary counter operation
 - JK flip-flops toggle when J=K=1
 - Low-order bit is complemented at each clock pulse
 - Whenever low order bit changes from 0 to 1, the next bit is complemented, and so on through the other flip-flops

Designing Circuits

- Do designers usually lay out circuits by hand?
 - No designers today rely on specialized software to create efficient circuits
 - Software is an enabler for the construction of better hardware!
- Many challenges in modern hardware designs
 - Sheer number of gates to implement!
 - Create "building blocks" (modules) that can be quickly assembled
 - Timing constraints Result is correct, but when is it correct?
 - Propagation delays occur between the time when a circuit's inputs are energized and when the output is accurate and stable

- Chapter 3A in textbook
- ➢ Simplification of Boolean functions is good...
 - Produces simpler (and usually faster) digital circuits
- ... but also time-consuming and error-prone
 - Easy to mis-use identities

- K-Maps are an easy, systematic method for reducing Boolean expressions
 - Named after Maurice Karnaugh (engineer at Bell Labs in 1950's)
 - Invented a graphical way of visualizing and then simplifying Boolean expressions

- A Kmap is a matrix representing a Boolean function
 - Rows and column headers represent the input values
 - Cells represent corresponding output values
- Input values are formatted as *minterms*
 - Minterm is a product term that contains all of the function's variables exactly once, either complemented or not complemented

Minterms

- For example, the minterms for a function having the inputs x and y are: \overline{xy} , \overline{xy} , $x\overline{y}$, and xy
- Consider the Boolean function,
- Its minterms are:

$$F(x,y) = xy + x\overline{y}$$

х	Y
0	0
0	1
1	0
1	1
	0 0 1

Minterms

- Function with three inputs?
 - Minterms are similar...
 - Just imagine counting in binary to find all the minterms...

Minterm	x	Y	Z
$\overline{x}\overline{y}\overline{z}$	0	0	0
$\overline{X}\overline{Y}Z$	0	0	1
$\overline{X}Y\overline{Z}$	0	1	0
Z YZ	0	1	1
$x\overline{Y}\overline{Z}$	1	0	0
ΧŸΖ	1	0	1
$xy\overline{z}$	1	1	0
XYZ	1	1	1

- A Kmap has a cell for each minterm
 - Cell for each line for the truth table of a function
- The truth table for the function F(x,y) = xy is shown along with its corresponding Kmap

$$F(X,Y) = XY$$

X	Y	XY
0	0	0
0	1	0
1	0	0
1	1	1

- 7 Truth table and Kmap for the function F(x,y) = x + y
- This function is equivalent to the OR of all of the minterms that have a value of 1

$$F(x,y) = x + y = \overline{x}y + x\overline{y} + xy$$

$$F(X,Y) = X+Y$$

x	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

X	0	1
0	0	1
1	1	1

- Minterm function derived from Kmap was not in simplest terms
- Use Kmap to reduce expression to simplest terms
 - Find adjacent 1's in the Kmap that can be collected into groups that are powers of two

Two groups in this example:

- Selected groups shown below
 - Groups are powers of two
 - Overlapping is OK!

Rules for Simplification

- ☐ Groupings can contain only 1's; no 0's
- □ Groups can be formed only at right angles
 - Diagonal groups are not allowed
- The number of 1's in a group must be a power of 2
 - → A single 1 is OK then, but not three 1's!
- Groups must be made as large as possible
 - Otherwise simplification is incomplete
- Groups can overlap
- Groups can wrap around the sides of the Kmap

- Extend to three variables? Easy!
- Note that the values for the yz combination at the top of the matrix form a pattern that is not a normal binary sequence
 - Each position can only differ by 1 variable

- What do the values look like?
 - First row contains all minterms where x has a value of zero.
 - First column contains all minterms where y and z both have a value of zero

Example:

$$F(X,Y) = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}Z + XYZ$$

Kmap:

X	Z 00	01	11	10
0	0	1	1	0
1	0	1	1	0

What is the largest group of 1's that is a power of 2?

- Look at the grouping closely
 - Changes in the variables x and y have no influence upon the value of the function
 - Thus, the function

$$F(X,Y) = \overline{X}\overline{Y}Z + \overline{X}YZ + X\overline{Y}Z + XYZ$$

7 reduces to F(x) = z

You could verify this reduction with identities or a truth table

7 Example:

$$F(X,Y,Z) = \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}YZ + \overline{X}Y\overline{Z} + X\overline{Y}\overline{Z} + XY\overline{Z}$$

Kmap:

X	Z 00	01	11	10
0	1	1	1	1
1	1	0	0	1

- What are the largest groups of 1's that are a power of 2?
 - How many groups do you see?

Kmap – Three Variables

- To make the **largest groups possible**, wrap around the sides
- How do we interpret results?
 - **7** Green row?
 - Pink square?

Kmap – Three Variables

- Green group only the value of x is significant
 - 7 Thus, \overline{X}
- ₱ Pink group only the value of z is significant.
- Our reduced function is: $F(X,Y,Z) = \overline{X} + \overline{Z}$

Recall that we had six minterms in our original function!

- Model can be extended to accommodate a fourinput function
 - 16 minterms produced

Y WX	z 00	01	11	10
0.0	WXYZ	WXYZ	WXYZ	WXYZ
01	WXYZ	WXYZ	WXYZ	WXYZ
11	WXŸZ	WXYZ	WXYZ	WXYZ
10	WXYZ	WXYZ	WXYZ	WXYZ

- Example: $F(W,X,Y,Z) = \overline{WXYZ} + \overline{WXYZ} + \overline{WXYZ}$ + $\overline{WXYZ} + \overline{WXYZ} + \overline{WXYZ} + \overline{WXYZ}$
- Kmap (showing non-zero terms)
- What <u>largest</u> groups should we select?
 - Groups can overlap!
 - Groups can wrap!

Y WX	Z 00	01	11	10
00	1	1		1
01				1
11				
10	1	1		1

Three groups

- Pink group that wraps top and bottom
- Green group that spans the corners
- Purple group entirely within the Kmap at the right

$$F(W, X, Y, Z) = \overline{X}\overline{Y} + \overline{X}\overline{Z} + \overline{W}Y\overline{Z}$$

- Kmap simplification may not be unique
 - Possible to have different largest possible groups...
- The (different) functions that result from the groupings below are logically equivalent

- Real circuits don't always need to have an output defined for every possible input
 - Example: Calculator displays have 7-segment LEDs. These LEDs can display 2⁷-1 patterns, but only ten of them are useful
- If a circuit is designed so that a particular set of inputs can never happen, we call this set of inputs a don't care condition
 - Helpful for Kmap circuit simplification

- Represent a don't care condition with an X
- Free to include or ignore the X's when choosing groups

WX Y	Z 00	01	11	10
00	X	1	1	X
01		×	1	
11	×		1	
10			1	

□ Grouping option #1:

$$F(W, X, Y, Z) = \overline{W}\overline{X} + YZ$$

□ Grouping option #2:

$$F(W,X,Y,Z) = \overline{W}Z + YZ$$

The truth table of

$$F(W, X, Y, Z) = \overline{W}\overline{X} + YZ$$

differs from the truth table of

$$F(W, X, Y, Z) = \overline{W}Z + YZ$$

- However, the values for which they differ are the inputs for which we have don't care conditions
 - Either is an acceptable solution

Homework #1 Review

- Grades and solutions posted on Sakai
 - Papers available after class (for those with Sakai issues...)
- 50-word sentence Describe why the "Von Neumann bottleneck" constrains CPU performance
 - The Von Neumann Bottleneck is a constraint on stored program machines in which the computer is limited to a single path between the main memory and the CPU, which forces the CPU to alternate between fetching and processing data, thereby limiting efficiency and performance.
 - **₹** 44 words (< 50 word limit), 1 sentence

Quiz #1 Review

- Grades and solutions posted on Sakai
- Problem 4 Why were transistors a huge technology improvement over vacuum tubes?
 - **尽力** Cooler, more reliable, cheaper, smaller, faster, ...
- Problem 5 What does Moore's Law "promise"?
 As of 2011, is the law still in effect?
 - Number of transistors you can buy (for fixed \$\$ / size) doubles ~2 years
 - **↗** Not "performance"!

Quiz #1 Review

- Problem 6 Memory is large and contains many instructions and data. How does the hardware know which instruction should be executed next?
 - Program counter has next address in memory
- Problem 6 What function does the ALU perform?
 - Mathematical operations! (Add, sub, mul, div, compare, ...)