

# Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

# Floating-Point Numbers, Character Codes, Error Detection

#### Homework #1 Review

- Solutions will be posted in Sakai (resources folder)
  - Why Sakai? Only available to class members...
- Review 50-word "essay"
- Review 2.7(a,b)
  - **₹** Represent **60** in 8-bit
    - Signed magnitude?
    - One's complement?
    - Two's complement?
  - **7** Represent **-60** in 8-bit
    - Signed magnitude?
    - One's complement?
    - Two's complement?

### **Upcoming Events**

- **7** Homework #2
  - Assigned today
  - Due Thursday
  - 3 problems
- Quiz #1
  - **7** Thursday
  - **7** Topics?
    - Material from Homework #1 and #2
    - Material from Intro lecture

# Why Floating-Point?

- Existing representations deal with integer values only
  - Signed magnitude
  - One's complement
  - Two's complement
- Adding in a fixed decimal point is awkward / inflexible
- Scientific and business applications need a standardized way to deal with real number values
  - Floating-point numbers

- Do we need hardware or software?
  - Clever programmers can do floating-point purely in software
  - Drawbacks: Complicated, slow
- Modern computers have **specialized hardware** that directly performs floating-point arithmetic

- Floating-point numbers allow an arbitrary number of decimal places to the right of the decimal point.
  - **7** For example:  $0.5 \times 0.25 = 0.125$
- They are often expressed in scientific notation
  - **7** For example:
    - $70.125 = 1.25 \times 10^{-1}$
    - 7 5,000,000 = 5.0 × 10<sup>6</sup>

- Computers use a form of scientific notation for floating-point representation
- Numbers written in scientific notation have three components:



- Computer representation of a floating-point number consists of three fixed-size fields:
- This is the standard arrangement of these fields:



Note: Although "significand" and "mantissa" do not technically mean the same thing, many people use these terms interchangeably. We use the term "significand" to refer to the <u>fractional</u> part of a floating point number.

- The one bit sign field is the sign of the stored value.
- The size of the *exponent* field determines the **range** of values that can be represented
- The size of the *significand* determines the **precision** of the representation



# Simplified Floating-Point Model



- We introduce a hypothetical "Simple Model" to explain the concepts with smaller numbers
  - **▶** Later we'll discuss the real standard!
- **▶** 14 bit long floating-point number:
  - → The exponent field is 1 bit
  - → The exponent field is 5 bits
  - **7** The significand field is 8 bits



- The significand is always preceded by an implied binary point, i.e. 0.xxxxxxxxxx
  - Thus it always contains a fractional binary value
- The exponent indicates the power of 2 by which the significand is multiplied



- Example: Express 32<sub>10</sub> in the simplified 14-bit floating-point model
- We know that 32 is  $2^5$ . So in (binary) scientific notation  $32 = 1.0 \times 2^5 = 0.1 \times 2^6$ 
  - In a moment, we'll explain why we prefer the second notation versus the first
- Using this information, we put 110 (=  $6_{10}$ ) in the exponent field and 1 (padded with 0's) in the significand:

0 00110 10000000

- Problem 1: We have many ways to represent the exact same number
  - Waste space
  - Cause confusion
  - Difficult to test for equality
- Figure: Multiple ways to represent 32 using our simplified model
  - By varying the exponent and shifting



- **Problem 2:** No way to express negative exponents
  - **7** Can't store  $0.5 (=2^{-1})!$
  - **7** The exponent field is an **unsigned** value



All of these problems can be fixed with no changes to our basic model

- New Rule #1
  - The first digit of the significand must be 1
  - In our simple model, all significands must have the form 0.1xxxxxxx
  - No ones to the left of the radix point
- This process is called normalization
  - Produces a unique pattern for each floating-point number
- Example:  $4.5_{10}$ =  $100.1 \times 2^{0}$ =  $1.001 \times 2^{2}$ =  $0.1001 \times 2^{3}$ .

The last expression is correctly normalized.

In our simple instructional model, we use no implied bits

- New Rule #2: To allow for negative exponents, we will use a biased exponent
- What is a bigs?
  - A number that is approximately midway in the range of values expressible by the exponent
  - **7** To determine the exponent to store, add the bias to your exponent
  - To decode a floating-point number, subtract the bias from the value in the exponent field
- Simplified model with 5-bit exponent
  - Just a bias of 16 (called an *excess-16* representation)
  - Exponent values less than 16 are negative, representing fractional numbers

- Example: Express **32**<sub>10</sub> in the revised 14-bit floating-point model
- We know that  $32 = 1.0 \times 2^5 = 0.1 \times 2^6$ 
  - → Significant is now normalized (0.1xxxxxx)
- Use excess 16 biased exponent
  - Add 16 to  $6 = 22_{10} (=10110_2)$
- Final value saved to memory:

0 10110 1000000

- Example: Express **0.0625**<sub>10</sub> in the revised 14-bit floating-point model
- 0.0625 is  $2^{-4}$ . In (binary) scientific notation, 0.0625 =  $1.0 \times 2^{-4} = 0.1 \times 2^{-3}$  (normalized notation)
- Use excess 16 biased exponent

$$7 16 + -3 = 13_{10} (=01101_2)$$

Final value saved to memory:

0 01101 10000000

- Example: Express -26.625<sub>10</sub> in the revised 14-bit floating-point model
- 26.625<sub>10</sub> =  $11010.101_2 \times 2^0$ Normalize =  $0.11010101 \times 2^5$ .
- Use excess 16 biased exponent:

$$7 16 + 5 = 21_{10} (=10101_2)$$

- Also need a 1 in the sign bit (negative number)
- **₹** Final value saved to memory:

1 10101 11010101

# The **Real** Floating-Point Model



- The IEEE has established standards for floating-point numbers
- **IEEE-754 single precision** standard (32 bits long)
  - 8-bit exponent (with a bias of 127)
  - 23-bit significand
  - → A "float" in C++
- **▼ IEEE-754 double precision** standard (64 bits long)
  - 11-bit exponent (with a bias of 1023)
  - 52-bit significand
  - A "double" in C++

- Key difference: Significand is normalized differently
  - Implied 1 to the left of the radix point, i.e. formatted as 1.xxx...
  - For example,  $4.5 = .1001 \times 2^3$  in IEEE format is  $4.5 = 1.001 \times 2^2$
  - The 1 is **implied**, which means it **is not saved in** computer memory
    - ▼ The stored significand would include only 001
    - Optimization This saves a bit!

- Example: Express -3.75 as a floating point number using IEEE *single* precision.
- Normalize according to IEEE rules:

$$-3.75 = -11.11_2 = -1.111 \times 2^1$$

- The bias for *single precision* is 127, so add 127 + 1 = 128
  - This is the exponent saved to computer memory
- The first 1 in the significand is implied, so we have:



(implied 1. not saved)

To decode saved number with the implied 1 in the significand:

$$(1).111_2 \times 2^{(128-127)} = -1.111_2 \times 2^1 = -11.11_2 = -3.75.$$

- Using the IEEE-754 single precision floating point standard:
  - An exponent of 255 indicates a special value.
    - If the significand is zero, the value is ± infinity.
    - If the significand is nonzero, the value is NaN, "not a number," often used to flag an error condition.
- Using the double precision standard:
  - An exponent of 2047 indicates a special value

- Both the 14-bit model that we have presented and the IEEE-754 floating point standard allow two representations for zero
  - Zero is indicated by all zeros in the exponent and the significand, but the sign bit can be either 0 or 1
- Programmers should avoid testing a floating-point value for equality to zero
  - Negative zero does not equal positive zero

- Floating-point addition and subtraction are done using methods analogous to how we perform calculations using pencil and paper
- The first thing that we do is express both operands in the same exponential power, then add the numbers, preserving the exponent in the sum
- If the exponent requires adjustment, we do so at the end of the calculation

- Example: Find  $12_{10} + 1.25_{10}$  using the 14-bit simple floating-point model
- 12<sub>10</sub> = 0.1100 x 2<sup>4</sup> 1.25<sub>10</sub> = 0.101 x 2<sup>1</sup> = 0.000101 x 2<sup>4</sup>

Thus, the sum is
 0.110101 x 2<sup>4</sup>



- Floating-point multiplication is also carried out in a manner akin to how we perform multiplication using pencil and paper.
  - Multiply the two significands
  - Add their exponents
- If the exponent requires adjustment, do so at the end of the calculation



- No matter how many bits we use in a floating-point representation, our model is finite
- Problem: Real numbers can be infinite, so our model can only approximate a real value
- At some point, every model breaks down, introducing errors into the calculations
- By using a greater number of bits in the model, we can reduce these errors, but we can never totally eliminate them

- Goal: **Reduce error** (or understand how much error is present)
- Errors can compound through repetitive arithmetic operations.
- Example: The 14-bit model cannot exactly represent the decimal value 128.5
  - In binary, it is 9 bits wide:  $10000000.1_2 = 128.5_{10}$
  - But we only have an 8-bit significand!

- How much error occurs when 128.5<sub>10</sub> is represented with the 14-bit model?
  - 7 True number: 128.5
  - Approximated number: 128
  - Error (percent difference)

$$\frac{128.5 - 128}{128.5} \approx 0.39\%$$

- If you wrote a loop that repetitively added 0.5 to 128.5 using 14-bit floating point, you would have an error of **nearly 2%** after only four iterations
  - **7** The error is less with "real" 32/64-bit floating point standards, but still exists

- **Tip:** You can reduce floating-point errors by using operands that are similar in magnitude.
  - **▶** Instead of adding 128.5 + 0.5 + 0.5 + 0.5 + ....
  - $\nearrow$  Do this: 0.5 + 0.5 + 0.5 + .... + 128.5 (at the end!)
- In this example, the error was caused by loss of the low-order bit
- Loss of the high-order bit is more problematic

- Floating-point overflow and underflow can cause programs to crash
- Overflow occurs when there is no room to store the high-order bits resulting from a calculation
- Underflow occurs when a value is too small to store, possibly resulting in division by zero

- When discussing floating-point numbers, it is important to understand the terms *range*, *precision*, and *accuracy*
- The **range** of a numeric integer format is the difference between the largest and smallest values that can be expressed
- Accuracy refers to how closely a numeric representation approximates a true value
- The **precision** of a number indicates how much information we have about a value

# Floating-Point Errors

- Most of the time, greater precision leads to better accuracy, but this is not always true
  - For example, 3.1333 is a value of pi that is accurate to two digits, but has 5 digits of precision

# Floating-Point Errors

Because of truncated bits, you cannot always assume that a particular floating point operation is commutative or distributive

$$(a + b) + c = a + (b + c)$$
 or

$$a*(b+c) = ab + ac$$

May not be true!!

# Floating-Point Errors

- To test a floating point value for equality to some other number, it is best to declare a "nearness to x" epsilon value
- Example: instead of checking to see if floating point x is equal to 2 as follows:
  - $\pi$  if (x = 2) then ...
  - **7** Do this:
    - $\nearrow$  if (abs(x 2) < epsilon) then ...
    - Must define epsilon to be small, but not too small!

# Character Codes



### Character Codes

- Goal of signed/unsigned/floating-point systems
  - Store numbers for computer processing
- Goal of character codes
  - Store numbers/characters in the machine, but for humans
- Character codes have evolved alongside computers
  - Larger memories and storage devices permit richer character codes
  - → The earliest computer coding systems used six bits
    - Fewest bits possible to represent digits (0-9), capital letters (A-Z), symbols

### Character Codes - BCD

- Only 4 bits
- Sparse or packed
  - Put one
    BCD digit in
    a byte / pad
    with 0's
  - Packed Put two BCD digits in one byte

| Digit           | BCD (4 bits) |  |  |
|-----------------|--------------|--|--|
| 0               | 0000         |  |  |
| 1               | 0001         |  |  |
| 2               | 0010         |  |  |
| 3               | 0011         |  |  |
| 4               | 0100         |  |  |
| 5               | 0101         |  |  |
| 6               | 0110         |  |  |
| 7               | 0111         |  |  |
| 8               | 1000         |  |  |
| 9               | 1001         |  |  |
| Unsigned Number | 1111         |  |  |
| Positive Number | 1100         |  |  |
| Negative Number | 1101         |  |  |

## Character Codes - EBCDIC

- Extended Binary-Coded Decimal Interchange Code (EBCDIC)
  - **↗** Introduced in 1964
  - Extension of BCD 8 bits instead of 4
- EBCDIC was support amazing new features!
  - Upper and lowercase alphabetic characters!
  - Punctuation!
  - Control characters!
- **EBCDIC** and BCD are still in use by IBM mainframes today

## Character Codes - ASCII

- American Standard Code for Information Interchange (ASCII)
  - **尽** Chosen by non-IBM companies
  - 7 bits − 8<sup>th</sup> bit could be used for parity
    - $\blacksquare$  Even # of bits = 0, odd # of bits = 1
- ASCII was the dominant character code outside the IBM mainframe world
  - ... until Unicode finally become widespread

### Character Codes - Unicode

- What about **non-latin** characters?
- Unicode
  - **7** 16-bits system allows for 65536 unique characters
  - All the Western (Latin, Cyrillic, Greek) characters, 4096 different symbols, 48,000+ Eastern (Chinese/Japanese/Korean) characters, etc...
- Sufficient for every character of every language?
  - Not quite but an optional extension allows for a million extra characters...

## Character Codes - Unicode

- The Unicode codespace allocation is shown at the right.
- The lowest-numbered Unicode characters comprise the ASCII code
- The highest provide for userdefined codes

| Character<br>Types | Language                                                        | Number of<br>Characters | Hexadecimal<br>Values |
|--------------------|-----------------------------------------------------------------|-------------------------|-----------------------|
| Alphabets          | Latin, Greek,<br>Cyrillic, etc.                                 | 8192                    | 0000<br>to<br>1FFF    |
| Symbols            | Dingbats,<br>Mathematical,<br>etc.                              | 4096                    | 2000<br>to<br>2FFF    |
| CJK                | Chinese, Japanese, and Korean phonetic symbols and punctuation. | 4096                    | 3000<br>to<br>3FFF    |
| Han                | Unified Chinese,<br>Japanese, and<br>Korean                     | 40,960                  | 4000<br>to<br>DFFF    |
|                    | Han Expansion                                                   | 4096                    | E000<br>to<br>EFFF    |
| User<br>Defined    |                                                                 | 4095                    | F000<br>to<br>FFFE    |



- Why worry aren't modern computers perfectly reliable?
- 100% perfection is physically impossible for any data recording or transmission medium over its entire expected useful life
- 100% perfection gets harder to achieve as technology improves
  - Smaller bits on hard drive or memory easier for cosmic rays to flip from 0<->1
  - Faster transmission of data on network harder to tell the difference between a 0 and 1

- Check digits / parity bits appended to the end of a long number – can provide some protection against data input errors
  - The last characters of UPC barcodes and ISBNs are check digits
- Longer data streams require more economical and sophisticated error detection mechanisms
- Cyclic redundancy checking (CRC) codes provide error detection for large blocks of data

- Data transmission errors are easy to fix once an error is detected
  - Just ask the sender to re-transmit the same data again
- In computer memory and data storage, however, this cannot be done
  - Too often the only copy of something important is in memory or on disk
- Thus, to provide data integrity over the long term, error correcting codes are required.

- Hamming codes and Reed-Solomon codes are two important error correcting codes
- Hamming codes can detect/correct a single bit error, and detect (but not correct) a two-bit error
  - Frequently used in RAM chips where errors are rare (but not rare enough!)
- Reed-Solomon codes are useful in correcting burst errors that occur when a series of adjacent bits are damaged
  - → Scratch on a CD/DVD
  - Burst of static on a DSL phone line