.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Floating-Point Numbers,
Character Codes,
Error Detection

Homework #1 Review

Solutions will be posted in Sakai (resources folder)
72 Why Sakai? Only available to class members...

Review 50-word “essay”

Review 2.7(a,b)

? Represent 60 in 8-bit
Signed magnitude?
One’s complement?
Two’s complement?

72 Represent -60 in 8-bit
Signed magnitude?
One’s complement?
Two’s complement?

Upcoming Events

Homework #2

? Assigned today
Due Thursday
?” 3 problems

Quiz #1
7 Thursday
72 Topics?
Material from Homework #1 and #2

Material from Intro lecture

Why Floating-Point?

Existing representations deal with integer values only
72 Signed magnitude
72 One’s complement

72 Two’s complement
Adding in a fixed decimal point is awkward / inflexible

Scientific and business applications need a standardized
way to deal with real number values

72 Floating-point numbers

Floating-Point Representation

Do we need hardware or software?

? Clever programmers can do floating-point purely in
software

?” Drawbacks: Complicated, slow

Modern computers have specialized hardware that
directly performs floating-point arithmetic

Floating-Point Representation

Floating-point numbers allow an arbitrary number
of decimal places to the right of the decimal point.

? For example: 0.5x0.25=0.125

They are often expressed in scientific notation

A For example:
0.125=1.25x 10
5,000,000 = 5.0 x 10°

Floating-Point Representation

Computers use a form of scientific notation for
floating-point representation

Numbers written in scientific notation have three
components:

Sign Mantissa Exponent

@ 1.25 x 10°1

Floating-Point Representation

Computer representation of a floating-point number
consists of three fixed-size fields:

This is the standard arrangement of these fields:

Sign

| ‘Exponent ‘ Significand \

Note: Although “significand” and “mantissa’ do not technically mean the same
thing, many people use these terms interchangeably. We use the term “significand”
to refer to the fractional part of a floating point number.

Floating-Point Representation

The one bit sign field is the sign of the stored value.

The size of the exponent field determines the range
of values that can be represented

The size of the significand determines the precision
of the representation

Sign

| ‘Exponent ‘ Significand \

10

.

Simplified Floating-Point Model

Computer Systems and Networks Fall 2011

Floating-Point Representation

We introduce a hypothetical “Simple Model” to explain
the concepts with smaller numbers

A Later we’ll discuss the real standard!

14 bit long floating-point number:
72 The exponent field is 1 bit

2 The exponent field is 5 bits

? The significand field is 8 bits

Sign

| ‘Exponent \ Significand \

Floating-Point Representation

The significand is always preceded by an implied
binary point, i.e. 0 . XXXXXXXXXX

72 Thus it always contains a fractional binary value

The exponent indicates the power of 2 by which the
significand is multiplied

Sign

| ‘Exponent ‘ Significand \

Floating-Point Representation

Example: Express 32, in the simplified 14-bit floating-
point model

We know that 32 is 2°. So in (binary) scientific notation
32=1.0x2>=0.1x2°

72 Ina moment, we’ll explain why we prefer the second
notation versus the first

Using this information, we put 110 (= 6,,) in the
exponent field and 1 (padded with 0’s) in the significand:

‘0|00110 |10000000\

Floating-Point Representation

Problem 1: We have many

ways to represent the exact oOloo110 10000000
same number

2 \Waste space
& Cause confusion 000111 01000000

72 Difficult to test for
equality

0O(010O00O0 001000O00O0
Figure: Multiple ways to
represent 32 using our
simplified model 0O([01001 00010000

72 By varying the exponent
and shifting

Floating-Point Representation

Problem 2: No way to express negative exponents
A Can’tstore 0.5 (=21)!

? The exponent field is an unsigned value

Sign

| ‘Exponent l Significand \

All of these problems can be fixed with no changes to our basic model

Floating-Point Representation

New Rule #1
72 The first digit of the significand must be 1

7 In our simple model, all significands must have the form
0. 1XXXXXXXX

72 No ones to the left of the radix point

This process is called normalization
? Produces a unique pattern for each floating-point number

Example: 4.5,,
=100.1 x 2°
=1.001 x 22
=0.1001 x 23.
The last expression is correctly normalized.

In our simple instructional model, we use no implied bits

Floating-Point Representation

New Rule #2: To allow for negative exponents, we will use a
biased exponent

What is a bias?

7 A number that is approximately midway in the range of values
expressible by the exponent

72 To determine the exponent to store, add the bias to your exponent

? To decode a floating-point number, subtract the bias from the value
in the exponent field

Simplified model with 5-bit exponent
72 Use a bias of 16 (called an excess-16 representation)

? Exponent values less than 16 are negative, representing fractional
numbers

Floating-Point Representation

Example: Express 32,, in the revised 14-bit floating-
point model

We know that 32 =1.0x2>=0.1x2°
? Significant is now normalized (0.1xxxxxx)

Use excess 16 biased exponent
A Add16to6=22,,(=10110,)

Final value saved to memory:

0110110 10000000

Floating-Point Representation

Example: Express 0.0625,, in the revised 14-bit
floating-point model

0.0625 is 24, In (binary) scientific notation,
0.0625=1.0x2%=0.1x 23 (normalized notation)

Use excess 16 biased exponent
A 16+-3=13,,(=01101,)

Final value saved to memory:

‘0101101|10000000\

Floating-Point Representation

Example: Express -26.625,, in the revised 14-bit floating-
point model

26.625,, = 11010.101, x 2°
Normalize =0.11010101 x 2~.

Use excess 16 biased exponent:
A 16+5=21,,(=10101,)

Also need a 1 in the sign bit (negative number)

Final value saved to memory:

1({10101 11010101

21

.

The Real Floating-Point Model

Computer Systems and Networks Fall 2011

IEEE Floating-Point Representation

The IEEE has established standards for floating-point
numbers

IEEE-754 single precision standard (32 bits long)
72 8-bit exponent (with a bias of 127)

72 23-bit significand

72 A“float” in C++

IEEE-754 double precision standard (64 bits long)
72 11-bit exponent (with a bias of 1023)

72 52-bit significand

2 A“double” in C++

IEEE Floating-Point Representation

7 Key difference: Significand is normalized

differently

7 Implied 1 to the left of the radix point, i.e.
formatted as 1.xxx...

2 For example, 4.5 =.1001 x 23 in IEEE format is
4.5=1.001 x 2?2

2 The 1lisimplied, which means it is not saved in
computer memory
71 The stored significand would include only 001
71 Optimization — This saves a bit!

IEEE Floating-Point Representation

Example: Express -3.75 as a floating point number using
|IEEE single precision.

Normalize according to IEEE rules:

”2 -375=-11.11,=-1.111x 2%

72 The bias for single precision is 127, so add 127 + 1 =128
This is the exponent saved to computer memory

2 The first 1 in the significand is implied, so we have:

i1 0 0 0 00 00)]1211000O0O0O0ODO0OO0ODO0OO0OTO0OOGOODDOTDOOQOSOTODODTDOTDO

To decode saved number with the implied 1 in the
(implied 1. significand:

not saved) -(1).111, x 2128127 = .1 111, x 21 = -11.11, = -3.75.

IEEE Floating-Point Representation

Using the IEEE-754 single precision floating point
standard:

72 An exponent of 255 indicates a special value.
If the significand is zero, the value is =+ infinity.

If the significand is nonzero, the value is NaN, “not a
number,” often used to flag an error condition.

Using the double precision standard:
72 An exponent of 2047 indicates a special value

IEEE Floating-Point Representation

Both the 14-bit model that we have presented and
the IEEE-754 floating point standard allow two
representations for zero

2 Zeroisindicated by all zeros in the exponent and
the significand, but the sign bit can be either O or 1

Programmers should avoid testing a floating-point
value for equality to zero

? Negative zero does not equal positive zero

Floating-Point Representation

Floating-point addition and subtraction are done
using methods analogous to how we perform
calculations using pencil and paper

The first thing that we do is express both operands
in the same exponential power, then add the
numbers, preserving the exponent in the sum

If the exponent requires adjustment, we do so at
the end of the calculation

Floating-Point Representation

Example: Find 12, + 1.25,, using the 14-bit simple
floating-point model

12,,=0.1100 x 2
1.25,, = 0.101 x 2* = 0.000101 x 2*

0O([10100 11000000

+ 0/10100 | 00010100
e Thus, the sum is

0.110101 x 2°

O([10100 11010100

Floating-Point Representation

Floating-point multiplication is also carried out in a
manner akin to how we perform multiplication

using pencil and paper.
72 Multiply the two significands
72 Add their exponents

If the exponent requires adjustment, do so at the
end of the calculation

30

Floating-Point Errors

Computer Systems and Networks Fall 2011

Floating-Point Errors

No matter how many bits we use in a floating-point
representation, our model is finite

Problem: Real numbers can be infinite, so our
model can only approximate a real value

At some point, every model breaks down,
introducing errors into the calculations

By using a greater number of bits in the model, we
can reduce these errors, but we can never totally
eliminate them

Floating-Point Errors

Goal: Reduce error (or understand how much error
is present)

Errors can compound through repetitive arithmetic
operations.

Example: The 14-bit model cannot exactly
represent the decimal value 128.5

2 In binary, it is 9 bits wide: 10000000.1, = 128.5,,
But we only have an 8-bit significand!

Floating-Point Errors

How much error occurs when 128.5,, is represented with the 14-
bit model?

? True number: 128.5
2 Approximated number: 128
?A Error (percent difference)

128.5-128
128.5

If you wrote a loop that repetitively added 0.5 to 128.5 using 14-
bit floating point, you would have an error of nearly 2% after only
four iterations

A The erroris less with “real” 32/64-bit floating point standards, but
still exists

~ 0.39%

Floating-Point Errors

Tip: You can reduce floating-point errors by using
operands that are similar in magnitude.

7 Instead of adding 128.5+ 0.5+ 0.5+ 0.5 +
?A Dothis:0.5+0.5+0.5+...+128.5 (at the end!)

In this example, the error was caused by loss of the
low-order bit

Loss of the high-order bit is more problematic

Floating-Point Errors

Floating-point overflow and underflow can cause
programs to crash

Overflow occurs when there is no room to store the
high-order bits resulting from a calculation

Underflow occurs when a value is too small to
store, possibly resulting in division by zero

Floating-Point Errors

When discussing floating-point numbers, it is important
to understand the terms range, precision, and accuracy

The range of a numeric integer format is the difference
between the largest and smallest values that can be
expressed

Accuracy refers to how closely a numeric representation
approximates a true value

The precision of a number indicates how much
information we have about a value

Floating-Point Errors

Most of the time, greater precision leads to better
accuracy, but this is not always true

? For example, 3.1333 is a value of pi that is accurate
to two digits, but has 5 digits of precision

Floating-Point Errors

Because of truncated bits, you cannot always
assume that a particular floating point operation is
commutative or distributive

A (a+b)+c=a+(b+c) or

May not be true!!
2 a*(b+c)=ab+ac y

Floating-Point Errors

To test a floating point value for equality to some
other number, it is best to declare a “nearness to x”
epsilon value

Example: instead of checking to see if floating point
X is equal to 2 as follows:

A if(x=2)then..
2 Do this:
if (abs(x - 2) < epsilon) then ...

Must define epsilon to be small, but not too small!

40

Character Codes

Computer Systems and Networks Fall 2011

Character Codes

Goal of signed/unsigned/floating-point systems
? Store numbers for computer processing

Goal of character codes

2 Store numbers/characters in the machine, but for
humans

Character codes have evolved alongside computers

72 Larger memories and storage devices permit richer
character codes

? The earliest computer coding systems used six bits

Fewest bits possible to represent digits (0-9), capital
letters (A-Z), symbols

Character Codes - BCD

Only 4 bits

0 0000

Sparse or ! Voot

packed 2 0010

A Sparse — 3 .

Put one 4 0100

BCD digit in 5 0101

a byte / pad 6 0110

with O’s - T

? Packed - 3 1000
Put two

BCD digits 2 1001

in one byte Unsigned Number 1111

Positive Number 1100

Negative Number 1101

Character Codes - EBCDIC

Extended Binary-Coded Decimal Interchange Code
(EBCDIC)

2 Introduced in 1964
2 Extension of BCD — 8 bits instead of 4

EBCDIC was support amazing new features!
72 Upper and lowercase alphabetic characters!
2 Punctuation!

?2 Control characters!

EBCDIC and BCD are still in use by IBM mainframes
today

Character Codes - ASCII

American Standard Code for Information
Interchange (ASCII)

2 Chosen by non-IBM companies

2 7 bits — 8t bit could be used for parity
Even # of bits =0, odd # of bits=1

ASCIl was the dominant character code outside the
IBM mainframe world

? ...until Unicode finally become widespread

Character Codes - Unicode

What about non-latin characters?

Unicode
? 16-bits system allows for 65536 unique characters

72 All the Western (Latin, Cyrillic, Greek) characters,
4096 different symbols, 48,000+ Eastern (Chinese/
Japanese/Korean) characters, etc...

Sufficient for every character of every language?

72 Not quite — but an optional extension allows for a
million extra characters...

Character Codes - Unicode

The Unicode codespace
allocation is shown at the
right.

The lowest-numbered
Unicode characters

comprise the ASCII code

The highest provide for user-
defined codes

Character Lanauage Number of Hexadecimal
Types guag Characters Values
. 0000
Latin, Greek
Alphabets - ’ 8192 to
Cyrillic, etc. 1FEF
Dingbats, 2000
Symbols | Mathematical, 4096 to
etc. 2FFF
Chinese,
Japanese, 3000
and Korean 4096 o
CJK)
phonetic 3FFF
symbols and
punctuation.
Unified Chinese, 4000
Han Japanese, and 40,960 to
Korean DFFF
EOO0O
Han Expansion 4096 to

47

Error Detection /[Correction

Computer Systems and Networks Fall 2011

Error Detection and Correction

Why worry - aren’t modern computers perfectly
reliable?

100% perfection is physically impossible for any data
recording or transmission medium over its entire
expected useful life

100% perfection gets harder to achieve as technology
improves

?2 Smaller bits on hard drive or memory — easier for cosmic
rays to flip from 0<->1

2 Faster transmission of data on network — harder to tell
the difference betweenaOand 1

Error Detection and Correction

Check digits / parity bits — appended to the end of a
long number — can provide some protection against

data input errors

2 The last characters of UPC barcodes and ISBNs are
check digits

Longer data streams require more economical and
sophisticated error detection mechanisms

Cyclic redundancy checking (CRC) codes provide
error detection for large blocks of data

Error Detection and Correction

Data transmission errors are easy to fix once an
error is detected

2 Just ask the sender to re-transmit the same data
again

In computer memory and data storage, however,
this cannot be done

? Too often the only copy of something important is in
memory or on disk

Thus, to provide data integrity over the long term,
error correcting codes are required.

Error Detection and Correction

Hamming codes and Reed-Solomon codes are two
important error correcting codes

Hamming codes can detect/correct a single bit error,
and detect (but not correct) a two-bit error

72 Frequently used in RAM chips where errors are rare (but
not rare enough!)

Reed-Solomon codes are useful in correcting burst
errors that occur when a series of adjacent bits are
damaged

& Scratch on a CD/DVD
? Burst of static on a DSL phone line

