

Computer Systems and Networks

ECPE 170 – Instructor Dr. Pallipuram – University of the Pacific

Linux Basics

These slides are credited to Dr. Jeffrey Shafer

Pre-Lab

- Everyone installed Linux on their computer
- Everyone launched the command line ("terminal") and ran a few commands
- What problems were encountered?
 - Virtualization support in processor not enabled (BIOS)
 - VMWare Player (current version) only runs on Windows 64
 - 3D graphics virtualization incompatible with specific hardware
 - Old virtual machine software
 - Others?
- Tip: If you have problems maximizing your VM to full screen, or doing copy-and-paste between Linux and Windows, make sure you installed the VM tools

Person of the Day: Linus Torvalds

Creator of Linux Kernel

- Started in 1991
- First developer hobby project (for fun!)
- Modern kernel is product of work by thousands of programmers
- Currently "final authority" on what is included in the kernel
- Creator of Git version control system
 - Initially for Linux kernel dev

Operating System Tasks

What does the OS need to do?

- Schedule processes to run
- Memory management
- Interrupt handling (manage hardware in general)
- Security (between processes)
- Network access
- Storage management (filesystem)
- Graphical user interface
 - May be a middleware layer on top of the OS

Operating Systems – Processes

- Process management is a key operating system task
- OS must initially create processes when you run your program
- OS can allow processes to access resources
 - Must *schedule* access to *shared* resources (e.g., CPU)
- OS can allow processes to communicate with each other
- OS must **clean up** after process finishes
 - Deallocate resources (e.g. memory, network sockets, file descriptors, etc...) that were created during process execution

Operating Systems – Scheduling

- The operating system schedules process execution
 - What processes are allowed to run at all?
 - → What processes are allowed to run <u>right now</u>?
- Context switches occur when the CPU is taken from one process and given to another process
 - CPU state (registers, current PC, etc...) is preserved during a context switch

Operating Systems – Scheduling

Preemptive Scheduling

- Each process is allocated a timeslice
- When the timeslice expires, a context switch occurs
 - A context switch can also occur when a higher-priority process needs the CPU

Discuss

What to expect from OS w.r.t Security when there are several Processes?

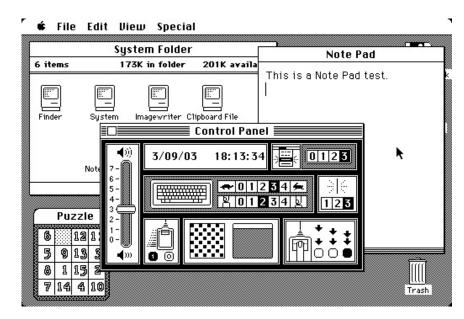
Operating Systems – Security

- Process A is forbidden from reading/modifying/writing the memory of Process B
 - Virtual memory is a huge help here!
 - Each process has a separate virtual address space that maps to different regions of physical memory
- Process A has other limits besides which memory pages it can access
 - What are some other limits?
 - Amount of memory consumed
 - Number of open files on disk
 - Which files on disk can be read/written

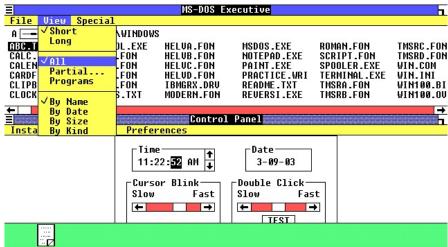
Operating Systems – Filesystem

- OS is responsible for managing data on persistent storage
- Job of the filesystem!
 - What files exist? (i.e. names)
 - How are they organized? (i.e. paths/folders)
 - Who owns and can access them? (i.e. usernames, permissions)
 - Where are individual file blocks stored on the disk?
 - i.e. filename "database.dat" is really composed of 15823 blocks, of which block 1 is located at logical block address #... on the hard drive.

Operating Systems – Device Management

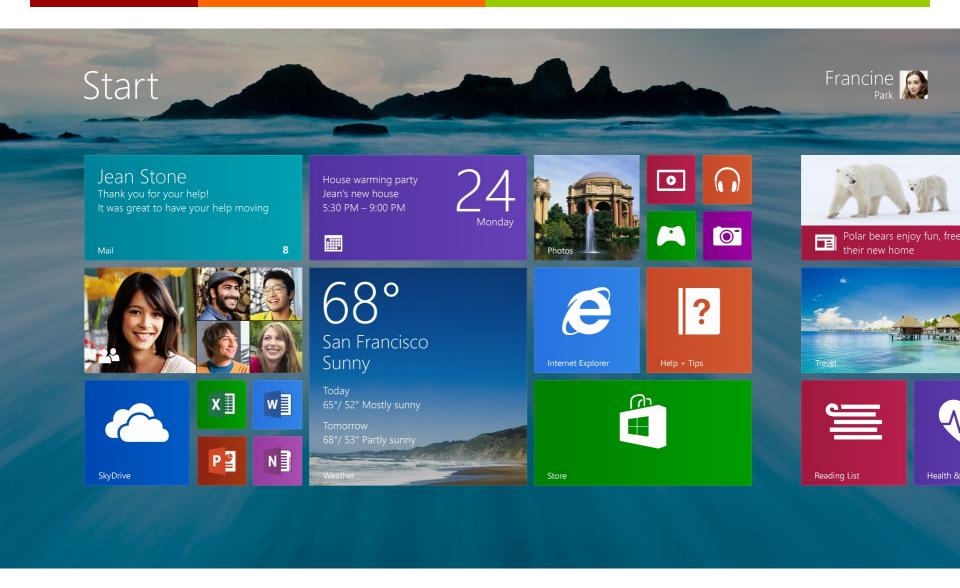

- Manage devices
 - How do we send data to the NIC for transmission?
 - How do we render an image for display on screen?
 - How do we read a block of data from our RAID disk controller?
- Operating systems can be extended through device drivers to manage new hardware
 - Hardware vendors write software to manage their devices
 - OS provides a fixed interface (API) that driver must follow
- Common task for a device driver is **responding to interrupts** (from that device)

Operating Systems – The Kernel


- Who does all this essential work in the operating system? (besides the GUI)
 - The kernel (i.e. the heart or core of the OS)
- Kernel performs:
 - Scheduling
 - Synchronization
 - Memory management
 - Interrupt handling
 - Security and protection

Operating Systems – GUI

Operating systems with **graphical user interfaces** (GUI) were first brought to market in the 1980s



Apple Mac OS 1.0 (released 1984)

Microsoft Windows 1.0 (released 1986)

Captures from http://www.quidebookgallery.org/screenshots

➢ Significant evolution in GUI design in subsequent decades

Computer Systems and Networks Fall 2021

Operating Systems – GUI

- **Technical perspective:**
 - The GUI is one of the **least important parts** of the operating system
- A GUI does not even have to be part of the true OS at all
 - Windows 1.0 was just a **program that ran on top** of MS-DOS, the *true* operating system (of that era)
- But to a user, the GUI is one of the most important parts of the OS!

Command-Line

Advantages of Command Line

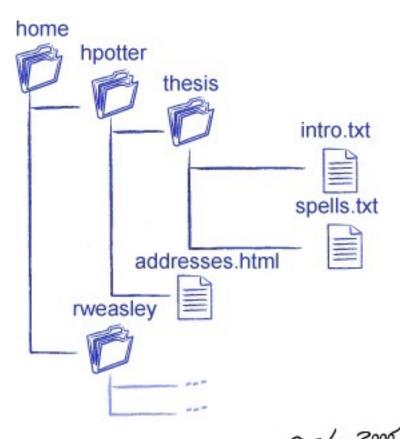
Advantages of Windows / GUI

Linux Command Line

Fall 2021

In-Class Activity

- Launch your Linux virtual machine!
- Open the Terminal a text-based interface that accepts your commands (Applications button -> Terminal)
- Open Canvas and today's In-Class Participation assignment


Problem 1 – Which Shell?

- A shell is a user program that defines how your terminal window behaves for input commands
 - Command-line interpreter
 - Parses user input and carries out commands
- Many types exist: sh, bash (Bourne again), C syntax motivated: csh, tsh, etc.
- Find out what shell is being used:

\$ echo \$SHELL

P1

Directory Structure

- Root directory: /
- **Absolute** path:
 - /home/hpotter/thesis/intro.txt
- **Relative** path:
 - If I am already in /home/potter/
 - addresses.html

http://osl.iu.edu/~pgottsch/swc2/lec/shell01.html

Problem 2 – Navigation Skills

₹ Where are we?

\$ pwd Print Working Directory

What items exist here?

\$ ls List items

\$ ls [options] [location]

P2

▼ Tilde (~) sign refers to your home directory. You can perform either

```
$ ls /home/you/Documents
```

\$ 1s ~/Documents

Navigation Skills

Dot (.) sign refers to current directory. Try:

```
$ 1s .
```

Double dot (..) refers to the parent directory of your current directory. Try:

```
$ ls ..
```

Problem 3 – Navigation Skills

Change directory

Hint: There's a very easy shortcut to change directory to your home directory...

Problem 4 – Documentation

Documentation ("manual") on commands

```
$ man [command]
```

- Example usage
 - Hidden files have a (.) before the filename
 - .secret, .bashrc,...
 - **7** Type ls Do you see any hidden files?
 - Using the man command, find out what option you need to use with ls to list the hidden files

Computer Systems and Networks

P4

Do these steps in your VM! Create a directory called Linux_tutorial inside
your home directory

```
$ mkdir [options] [dirname]
```

- Change to the Linux_tutorial directory
- Create a blank file called example1

```
$ touch example1
```

Do these steps in your VM! Put something in the file via output redirection

Copy file example 1 to example 2

Move the example2 file to your home directory

Do this step in your VM! Remove the file example2

```
$ rm ~/example2
```

General form of command

```
$ rmdir [options] [dirname]
```

```
$ rm [options] [filename]
```

Piping

Do this step in your VM!

- Change to /etc directory and count the number of files in that directory. You only have 60 seconds.

 Tick tock!!
- Tip: Combine list tool with another tool that will count the number of words (or <u>lines</u>)

```
$ cd /etc
$ ls -l | wc -l

Pipe Word Option: Count

Count number of lines
```

Problem 5 – Wildcards

- Directory listings can use wildcards to search for matching file names
- Example: In /etc directory, list all files with .conf extension

Example: In /etc directory, list all files where second letter is d and with . conf extension

\$ ls ?d*.conf

* – Zero or more characters

? – Single character

[] – Range of characters

P5

File Permissions

- Linux provides you privacy with files via permissions
 - r read the contents of the file can be viewed
 - **7 w** write − something can be written to the file
 - x execute the file can be executed if an executable or script
- Permission is granted to three types of people
 - **⊘ owner** the one who created the file, also called user (u)
 - **₹ group** the file belongs to a single group (g)
 - others everyone else (o) but the group or the owner

Problem 6 – File Permissions

Create the requested file with the requested contents, and obtain a directory listing...

```
-rw-rw-r-- 1 shafer shafer 18 Sep 4 14:40 example3
```

<u>owner</u> has read and write permissions, but not execute group has read and write permissions, but not execute <u>others</u> have read only permissions

File Permissions

■ The example3 file can't be executed – try it:

\$./example3

Problem 7 – File Permissions

\$ chmod [permissions] [file]

- Changing the file permissions requires answers some questions
 - Whose permissions are we changing?
 - [ugoa]: owner, group, others, or all
 - Are we granting or revoking permission?
 - +: providing -: revoking
 - What are we providing?
 - **r** (read), **w** (write), or **x** (execute)

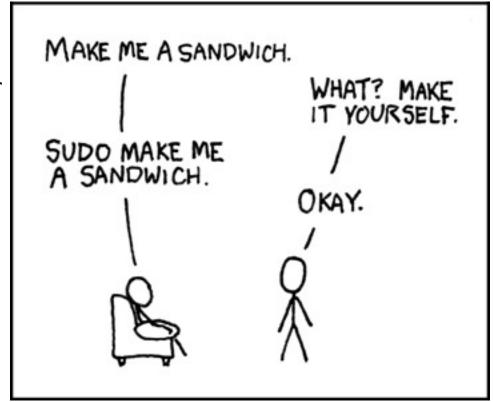
\$ chmod u+rwx file
Provides rd/wr/ex to owner

\$chmod g-x file Removes ex for group

P7

Problem 8 – Wrap-up

- Open-ended questions based on what we've learned today
- Take 5 minutes and complete...


Shell Shortcuts

- <TAB> key to auto-complete commands
- <UP ARROW> key to cycle through previous commands

These two tips make your life so much <u>easier!</u>

Linux: Sudo Command

- sudo <<command>>
- Command is run as root user
- **₹** root = "Administrator"

http://xkcd.com/149/

Labs

Labs have (at most) two graded elements:

- **1. Pre-Lab "checkpoint"** quick verification that pre-lab *appears* to be done
 - 1. Due at start of first day of lab

2. Lab Report

- 1. Submit all source code used with lab report
- 2. Due by posted date after lab

Lab Reports

- Not really "reports", more like "worksheets"
- Create in LibreOffice (aka OpenOffice) using example template on website
- Export in PDF format
- Submit
 - Via Canvas Assignments section for Lab 1 only!
 - Via Version control for Lab 2 and beyond

Upcoming Schedule

- Today
 - **7** Lab 1 − Linux Basics
- Thursday
 - **7** Lab 2 − Version Control
- Deadlines
 - Lab 2 pre-lab checkpoint Start of class Thursday
 - Lab 1 Report Sep 6th, 2021 by 11:59 PM
 - Submit via Canvas
 - **7** Lab 2 Report − Sep 8th, 2021 by 11:59 PM