
ì
Computer Systems and Networks
ECPE 170 – Jeff Shafer – University of the Pacific

MIPS Assembly
(Functions)

Lab Schedule

Activities
ì This Week

ì Lab work time
ì MIPS functions

Assignments Due
ì Lab 10

ì Due by Apr 8th 5:00am

ì Lab 11
ì Due by Apr 16th 5:00am

ì Lab 12
ì Due by Apr 28th 5:00am

Spring 2021Computer Systems and Networks

2

ì
Program Counter

Spring 2021Computer Systems and Networks

3

Program Counter

ì Instructions are stored in memory sequentially

ì Each MIPS32 instruction occupies 4 bytes

ì How does the processor know from where to fetch
the next instruction?
ì A special 32-bit register called Program Counter (PC)

holds the address of the next instruction

Spring 2021Computer Systems and Networks

4

Program Counter in Action

Spring 2021Computer Systems and Networks

5

What is the C
code for this

MIPS Assembly?

Address Instruction

4 addi $t0, $zero, 0

8 addi $t1, $zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

t0 = 0;
t1 = 2;

while(t0<t1)
{

t1++;
}

//exit

Program Counter in Action

Spring 2021Computer Systems and Networks

6

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC

4
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

7

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC

8
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

8

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC12
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

9

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC

16
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

10

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC

20
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

11

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC12
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

12

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC

16
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

13

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC

20
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

14

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC12
PC

Program Counter in Action

Spring 2021Computer Systems and Networks

15

Instructions are stored in memory and each occupy 4 bytes
Address Instruction

4 addi $t0,$zero,0

8 addi $t1,$zero, 2

12 bge $t0, $t1, <label to addr 24>

16 addi $t0, $t0, 1

20 j <label to addr. 12>

24 li $v0, 10

28 syscall

PC

24
PC

ì
MIPS Functions

Spring 2021Computer Systems and Networks

16

Function Requirements?

ì What happens when we call a function?
1. Place function arguments in standard location where

function can find them
2. Save current program location to return to later

(the “Program Counter” register)
3. Jump to the function location
4. Function runs using provided arguments
5. Function produces output (return value) and saves it

in standard location
6. Jump to original program location (return)

1. Technically, +1 instruction

Spring 2021Computer Systems and Networks

17

Function Requirements

ì Can a function change local variables of its calling
function?

ì No! The function operates in its own “bubble”

ì What happens if the function changes $s0 which
was also used by the calling function?

ì Problem! Your function has corrupted the calling
function

Spring 2021Computer Systems and Networks

18

Functions in Assembly

Spring 2021Computer Systems and Networks

19

In assembly, you must do all the background
work for functions that the compiler did
automatically in a higher level language

Functions still allow for code re-use (good!),
but they’re more complicated than in C or C++

Registers

Spring 2021Computer Systems and Networks

20

Name Use

$zero Constant value: ZERO

$s0-$s7 Local variables
(Convention: These are saved if a function needs to re-use them)

$t0-$t9 Temporary results
(Convention: These are not saved if a function needs to re-use them)

$a0-$a3 Arguments to pass to function (max of 4)

$v0-$v1 Return value to obtain from function (max of 2)

$ra Return address of function

$sp Stack pointer (current top of stack)

New!

More Jumps

ì Jump and Link
(side effect: $ra stores address of next instruction)

ì Jump Register
(destination address is stored in <reg1>

Spring 2021Computer Systems and Networks

21

jal <destination>

jr <reg1>

Use this to call a function!

Use this to return from a function!

Basic Functions in MIPS

1. Program saves the context (registers) of calling function (caller)

3. Program calls the callee via jump-and-link instruction
jal <function label>

jal saves the address of the next instruction in return address reg., $ra

Program Counter (PC) points to the callee’s location.
Callee saves return values in regs $v0-$v1

2. Program saves the arguments in registers ($a0 - $a3)

4. Callee returns via jump register instruction

jr sets PC to $ra. PC continues there onwards

jr <register name> #usually $ra

Spring 2021Computer Systems and Networks

22

Problem 1 : Write Code

ì Place arguments
in $a0-$a3

ì Place return values
in $v0-$v1

ì Return address saved
automatically in $ra

ì Ignore the stack for this
example. (Thus, the function
will destroy registers used by
calling function)

Spring 2021Computer Systems and Networks

23

#include <stdio.h>

int function(int a);

int main()
{
int x=5;
int y;

y = function(x);

printf("y=%i\n", y);

return 0;
}

int function(int a)
{
return 3*a+5;

} P1

Spring 2021Computer Systems and Networks

24

Simple routine to demo functions
NOT using a stack in this example.
Thus, the function does not preserve values
of calling function!

--

.text

.globl main
main:

Register assignments
$s0 = x
$s1 = y

Initialize registers
lw $s0, x # Reg $s0 = x
lw $s1, y # Reg $s1 = y

Call function
move $a0, $s0 # Argument 1: x ($s0)
jal fun # Save current PC in $ra, and jump to fun
move $s1,$v0 # Return value saved in $v0. This is y ($s1)

Print msg1
li $v0, 4 # print_string syscall code = 4
la $a0, msg1
syscall

Print result (y)
li $v0,1 # print_int syscall code = 1
move $a0, $s1 # Load integer to print in $a0
syscall

Print newline
li $v0,4 # print_string syscall code = 4
la $a0, lf
syscall

Exit
li $v0,10 # exit
syscall

--

FUNCTION: int fun(int a)
Arguments are stored in $a0
Return value is stored in $v0
Return address is stored in $ra (put there by jal instruction)
Typical function operation is:

fun: # Do the function math
li $s0, 3
mul $s1,$s0,$a0# s1 = 3*$a0 (i.e. 3*a)
addi $s1,$s1,5 # 3*a+5

Save the return value in $v0
move $v0,$s1

Return from function
jr $ra # Jump to addr stored in $ra

--

Start .data segment (data!)
.data

x: .word 5
y: .word 0
msg1: .asciiz "y="
lf: .asciiz"\n"

Preserving Registers

ì What if we don’t want to destroy registers used by
the calling function?
ì Perhaps $s0-$s7 are in use with important data…
ì Or $ra holds the return address of a previous call…

ì Need to save those registers somewhere
while our function runs (like memory!)

ì A stack is a good structure for this

Spring 2021Computer Systems and Networks

25

The Stack

ì Stack is a data structure stored
in memory

ì $sp (“Stack Pointer”) points to
top of stack
ì But stack grows down in

memory!

ì Example
ì Push 4 to stack
ì Push 5 to stack
ì Pop (5 from stack)
ì Pop (4 from stack)

Spring 2021Computer Systems and Networks

26

Memory$sp

The Stack

ì Stack is a data structure stored
in memory

ì $sp (“Stack Pointer”) points to
top of stack
ì But stack grows down in

memory!

ì Example
ì Push 4 to stack
ì Push 5 to stack
ì Pop (5 from stack)
ì Pop (4 from stack)

Spring 2021Computer Systems and Networks

27

Memory

$sp 4

The Stack

ì Stack is a data structure stored
in memory

ì $sp (“Stack Pointer”) points to
top of stack
ì But stack grows down in

memory!

ì Example
ì Push 4 to stack
ì Push 5 to stack
ì Pop (5 from stack)
ì Pop (4 from stack)

Spring 2021Computer Systems and Networks

28

Memory

$sp

4

5

The Stack

ì Stack is a data structure stored
in memory

ì $sp (“Stack Pointer”) points to
top of stack
ì But stack grows down in

memory!

ì Example
ì Push 4 to stack
ì Push 5 to stack
ì Pop (5 from stack)
ì Pop (4 from stack)

Spring 2021Computer Systems and Networks

29

Memory

$sp 4

The Stack

ì Stack is a data structure stored
in memory

ì $sp (“Stack Pointer”) points to
top of stack
ì But stack grows down in

memory!

ì Example
ì Add 4 to stack
ì Add 5 to stack
ì Pop
ì Pop

Spring 2021Computer Systems and Networks

30

Memory$sp

Problem 2 : Stack Code

ì Using $sp, write the set of commands for pushing
and popping the register $s0

Spring 2021Computer Systems and Networks

31

P2

Beginning of function

Push onto stack
addi $sp,$sp,-4 # Adjust stack pointer
sw $s0,0($sp) # Save $s0

Function code. Put return values in $v0,$v1

Restore saved register values from stack
in opposite order. This is POP’ing from stack
lw $s0,0($sp) # Restore $s0
addi $sp,$sp,4 # Adjust stack pointer

Stack Responsibilities: Caller

ì What must a caller do with the stack prior to a
function call? (Less common for our programs)

ì Must use the stack if
ì It wants to store temporary registers ($t0-$t9) or

its argument registers ($a0-$a3) onto the stack.
This is done before calling another function

ì It wants to pass arguments via stack. (Not necessary
for our programs, we will use the $a registers)

ì After function returns, the caller should pop the
stack

Spring 2021Computer Systems and Networks

32

Stack Responsibilities: Callee

ì What must a callee do with the stack?
(required for our programs)
1. Push $s registers onto the stack, so that it does not

overwrite the caller’s data
2. Push $ra onto the stack because a callee may call

another function, overwriting the return address.
3. Do function stuff
4. Pop $ra from the stack
5. Pop $s registers from the stack

Spring 2021Computer Systems and Networks

33

Stack Example

ì How would we modify Problem 1 to use a stack?

Spring 2021Computer Systems and Networks

34

Spring 2021Computer Systems and Networks

35

Simple routine to demo functions
NOT using a stack in this example.
Thus, the function does not preserve values
of calling function!

--

.text

.globl main
main:

Register assignments
$s0 = x
$s1 = y

Initialize registers
lw $s0, x # Reg $s0 = x
lw $s1, y # Reg $s1 = y

Call function
move $a0, $s0 # Argument 1: x ($s0)
jal fun # Save current PC in $ra, and jump to fun
move $s1,$v0 # Return value saved in $v0. This is y ($s1)

Print msg1
li $v0, 4 # print_string syscall code = 4
la $a0, msg1
syscall

Print result (y)
li $v0,1 # print_int syscall code = 1
move $a0, $s1 # Load integer to print in $a0
syscall

Print newline
li $v0,4 # print_string syscall code = 4
la $a0, lf
syscall

Exit
li $v0,10 # exit
syscall

--

FUNCTION: int fun(int a)
Arguments are stored in $a0
Return value is stored in $v0
Return address is stored in $ra (put there by jal instruction)
Typical function operation is:

fun: # This function overwrites $s0 and $s1
We should save those on the stack
This is PUSH’ing onto the stack
addi $sp,$sp,-4# Adjust stack pointer
sw $s0,0($sp) # Save $s0
addi $sp,$sp,-4# Adjust stack pointer
sw $s1,0($sp) # Save $s1

Do the function math
li $s0, 3
mul $s1,$s0,$a0# s1 = 3*$a0 (i.e. 3*a)
addi $s1,$s1,5 # 3*a+5

Save the return value in $v0
move $v0,$s1

Restore saved register values from stack in opposite order
This is POP’ing from stack
lw $s1,0($sp) # Restore $s1
addi $sp,$sp,4 # Adjust stack pointer
lw $s0,0($sp) # Restore $s0
addi $sp,$sp,4 # Adjust stack pointer

Return from function
jr $ra # Jump to addr stored in $ra

--

Start .data segment (data!)
.data

x: .word 5
y: .word 0
msg1: .asciiz "y="
lf: .asciiz"\n"

Problem 3 : Write Code

Spring 2021Computer Systems and Networks

36

int array[] = {2, 3, 4, 5, 6};

int main() {
int num, position;
scanf("%d",&num);
position = search(array, num, 5);
printf("The position is:

%d",position);
}

int search(int *array, int num, int size)
{
int position = -1;
for(int i=0;i<size;i++)
if(array[i]==num) {

position=i;
break;

}
return position;

} P3

Map:
$s0: num
$s1: position
$a0: array address
$a1: num
$a2: size
$v0: return value

