
ì
Computer Systems and Networks
ECPE 170 – Jeff Shafer – University of the Pacific

MIPS Assembly
(Memory Fundamentals)

Lab Schedule

Activities
ì This Week

ì Tuesday: MIPS lecture
(arithmetic, branches)

ì Thursday: MIPS lecture
(memory)

Assignments Due
ì Lab 10

ì Due by Apr 8th 5:00am

ì Lab 11
ì Due by Apr 16th 5:00am

ì Lab 12
ì Due by Apr 28th 5:00am

Spring 2021Computer Systems and Networks

2

Spring 2021Computer Systems and Networks

3# Declare main as a global function
.globl main

All program code is placed after the
.text assembler directive
.text

The label 'main' represents the starting point
main:

MAIN CODE GOES HERE

Exit the program by means of a syscall.
There are many syscalls - pick the desired one
by placing its code in $v0. The code for exit is "10"

li $v0, 10 # Sets $v0 to "10" to select exit syscall
syscall # Exit

All memory structures are placed after the
.data assembler directive
.data

The .word assembler directive reserves space
in memory for a single 4-byte word (or multiple 4-byte words)
and assigns that memory location an initial value
(or a comma separated list of initial values)
#For example:
#value: .word 12

Stub Program

ì
MIPS Memory Access

Spring 2021Computer Systems and Networks

4

Memory

ì Challenge: Limited supply of registers
ì Physical limitation: We can’t put more on the

processor chip, and maintain their current speed
ì Many elements compete for space in the CPU…

ì Solution: Store data in memory

ì MIPS provides instructions that transfer data
between memory and registers

Spring 2021Computer Systems and Networks

5

MIPS Memory Declarations

ì All of the memory values must be declared in the
.data section of the code
ì You ask the assembler to reserve a region of memory in

the data section and refer to that region with a label

ì Examples
ì Declare a 32-bit word with initial value of 12:

Z: .word 12
ì Declare a 256 byte region of memory

(could be 64 integers, 256 chars, etc…)
array: .space 256

ì Declare a null-terminated string with initial value
msg: .asciiz "Hello world!"

Spring 2021Computer Systems and Networks

6

Memory Fundamentals

Spring 2021Computer Systems and Networks

7

MIPS cannot directly manipulate
data in memory!

Data must be moved to a register
first! (And results must be saved to

a register when finished)

This is a common design in RISC-style machines: a load-store architecture

Memory Fundamentals

Spring 2021Computer Systems and Networks

8

Yes, it’s a pain to keep moving data
between registers and memory.

But consider it your motivation to
reduce the number of memory

accesses. That will improve
program performance!

Memory Fundamentals

ì Four questions to ask when accessing memory:
1. What direction do I want to copy data?

(i.e. to memory, or from memory?)
2. What is the specific memory address?
3. What is the specific register name? (or number)
4. How much data do I want to move?

Spring 2021Computer Systems and Networks

9

CPU

Memory – Fundamental Operations

Load
ì Copy data from

memory to register

Store
ì Copy data from

register to memory

Spring 2021Computer Systems and Networks

10

CPU
Memory Memory

Memory – Determining Address

ì There are many ways to calculate the
desired memory address
ì These are called addressing modes
ì We’ll just learn one mode now:

base + offset

ì The base address could be HUGE!
(32 bits)
ì We’ll place it in a register

ì The offset is typically small
ì We’ll directly include it in the

instruction as an “immediate”

Spring 2021Computer Systems and Networks

11

Memory

0

1

2

3

4

Base

Offset

MIPS notation: offset(base)

Memory – Register Name

ì What is the name of the register to use as either
the data destination (for a load) or a data source
(for a store)?

ì Use the same register names previously learned

Spring 2021Computer Systems and Networks

12

Memory - Data Transfer Size

ì How much data do I want to load or store?
ì A full word? (32 bits)
ì A “half word”? (16 bits)
ì A byte? (8 bits)

ì We’ll have a different instruction for each quantity
of data

ì No option to load an entire array!
ì Will need a loop that loads 1 element at a time…

Spring 2021Computer Systems and Networks

13

Memory – Data Transfer Instructions

ì Load (copy from memory to register)

ì Store (copy from register to memory)

Spring 2021Computer Systems and Networks

14

lw <reg>, <offset>(<base addr reg>)

lb <reg>, <offset>(<base addr reg>)

sw <reg>, <offset>(<base addr reg>)

sb <reg>, <offset>(<base addr reg>)

Word:

Byte:

Word:

Byte:

Register Memory Location

Example

ì What will this instruction do?

ì Load word copies from memory to register:
ì Base address: stored in register $s2
ì Offset: 20 bytes
ì Destination register: $s1
ì Amount of data transferred: 1 word (32 bits)

Spring 2021Computer Systems and Networks

15

lw $s1, 20($s2)

Problem 1: Simple Program

ì Declare memory variables A, B, and C, initialized to
20, 45, and 0, respectively. In main, set C to sum
of A and B.

Spring 2021Computer Systems and Networks

16

P1

.globl main

.text
main: #Main goes here

li $v0, 10 #v0 argument set to 10
for system call “exit”

syscall
.data #Data goes in this section

Aside – Compiler

ì When programming in C / C++, are your variables
(int, float, char, …) stored in memory or in
registers?

ì Answer: It depends

ì Compiler will choose where to place variables
ì Registers: Loop counters, frequently accessed scalar

values, variables local to a procedure
ì Memory: Arrays, infrequently accessed data values

Spring 2021Computer Systems and Networks

17

ì
MIPS Array Access

Spring 2021Computer Systems and Networks

18

Arrays Revisited

ì Name of the array is the address of first element

ì Values are spaced by the size of the data
ì Integers – Spaced by 4 bytes
ì Doubles – Spaced by 8 bytes

Spring 2021Computer Systems and Networks

19

int array[20];
printf("Address of first element:%u",array);

int array[20];
printf("Address of the first element:%u",

&array[0]); // Say it prints 65530
printf("Address of the second element:%u",

&array[1]); // Will print 65534

Arrays Revisited

Spring 2021Computer Systems and Networks

20

Base offset addressing / Indexed Addressing:
A[5], array[i], ...

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]
10 14 18 22 26 30 34 38 42 46

A:
address:

Base
offset=5

Pointer arithmetic:
int array[10];
printf("array[5]:%u", *(array+5));

//Adds 20 bytes to base address to access array[5]

Remember, in C, pointer arithmetic is done with respect to data size!

Problem 2: Arrays Revisited

ì Write a C for-loop to print the values of a 1-D
array of size N using:
1. Indexed addressing
2. Pointer arithmetic

Spring 2021Computer Systems and Networks

21

P2

Task : Write Code

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

22

g = h + array[16]
(Array of words. Can leave g and h in registers)

Code:
Assume $s3 is already set

lw $t0, 16($s3)
add $s1, $s2, $t0

Map:
$s1 = g
$s2 = h
$s3 = base
address of
array

Memory Address

ì Slight flaw in previous solution
ì The programmer intended to load the 16th array

element
ì Each element is 4 bytes (1 word)
ì The offset is in bytes
ì 16 * 4 = 64

Spring 2021Computer Systems and Networks

23

Correct Code:
Assume $s3 is already set

lw $t0, 64($s3)
add $s1, $s2, $t0

C vs. MIPS

C Programming
ì C has the format:

base[offset]

ì The C compiler multiplies
the offset with the size of
the data to compute the
correct offset in bytes

MIPS Programming
ì MIPS has the format:

offset(<base-addr-reg>)

ì In MIPS, YOU multiply the
offset with size of the data
to compute the correct
offset in bytes

Spring 2021Computer Systems and Networks

24

Problem 3: Base Offset Addressing

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

25

array[12] = h + array[8]
(Array of words. Assume h is in register)

Code:
Assume $s3 is already set

lw $t0, 32($s3)
add $t1, $s2, $t0
sw $t1, 48($s3)

Map:
$s2 = h
$s3 = base
address of
array
$t1 = temp

P3

Problem 4: Pointer Arithmetic

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

26

g = h + array[i]
(Array of words. Assume g, h, and i are in registers)

Code:
"Multiply" i by 4
add $t1, $s4, $s4 # x2
add $t1, $t1, $t1 # x2 again
Get addr of array[i]
add $t1, $t1, $s3
Load array[i]
lw $t0, 0($t1)
Compute add
add $s1, $s2, $t0

Map:
$s1 = g
$s2 = h
$s3 = base
address of
array
$s4 = i

P4

Addresses

ì Tip: To get the address of a label in the .data
section, use the “load address” instructions (la)

Spring 2021Computer Systems and Networks

27

Example:
Load the starting address of
the label 'array' into $s0
la $s0, array

la <reg>, label

Problem 5: Full Program

ì Write a complete MIPS program which implements
the C code below. Test your program in QtSPIM.

Spring 2021Computer Systems and Networks

28

P5

int array[7]; // Store in memory
int main()
{

int i=0; // Store in register
array[0]=5;
array[1]=4;
for(i=2; i<7; i++)

array[i] = array[i-2] + array[i-1];
}

