
ì
Computer Systems and Networks
ECPE 170 – Jeff Shafer – University of the Pacific

MIPS Assembly
(Arithmetic, Branches)

Lab Schedule

Activities
ì This Week

ì Tuesday: MIPS lecture
(arithmetic, branches)

ì Thursday: MIPS lecture
(memory)

Assignments Due
ì Lab 10

ì Due by Apr 8th 5:00am

ì Lab 11
ì Due by Apr 16th 5:00am

ì Lab 12
ì Due by Apr 28th 5:00am

Spring 2021Computer Systems and Networks

2

Person of the Day – John Cocke

ì Computer architecture pioneer
ì “Father of RISC Architecture”
ì Developed IBM 801 processor,

1975-1980

ì Winner, ACM Turing Award, 1987

Spring 2021Computer Systems and Networks

3

RISC = Reduced Instruction Set Computing

Achieve higher performance with simple
instructions that execute faster

Person of the Day – John Hennessy

ì Computer architecture pioneer

ì Popularized RISC architecture in early
1980’s

ì Founder of MIPS Computer Systems
in 1984

ì Past president of Stanford University

Spring 2021Computer Systems and Networks

4

Class to Date

Spring 2021Computer Systems and Networks

5

Human
(C Code)

Compiler
(Assembly

code)

Compiler
(Object file /
binary code)

Linker
(Executable
program)

Class Now

Spring 2021Computer Systems and Networks

6

Human
(Assembly

code)

Assembler
(Object file /
binary code)

Linker
(Executable
Program)

ì
MIPS

Spring 2021Computer Systems and Networks

7

MIPS Overview

ì Family of computer processors first introduced in
1981

ì Microprocessor without Interlocked Pipeline Stages
ì Original acronym
ì Now MIPS stands for nothing at all…

Spring 2021Computer Systems and Networks

8

MIPS Products

ì Embedded devices
ì Cisco/Linksys routers
ì Cable boxes
ì MIPS processor is buried inside System-on-a-Chip (SOC)

ì Gaming / entertainment
ì Nintendo 64
ì Playstation, Playstation 2, PSP

ì Computers?
ì Not so much anymore…
ì SGI / DEC / NEC workstations back in 1990’s

Spring 2021Computer Systems and Networks

9

MIPS Products

ì NASA New Horizons probe
ì Launched January 2006

ì MIPS “Mongoose-V” chip
ì 12 MhZ (2006, remember?)

ì Radiation Hardened
ì Based on R3000

(PlayStation
CPU)

Spring 2021Computer Systems and Networks

10

http://blog.imgtec.com/mips-processors/mips-goes-to-pluto
http://synova.com/proc/MongooseV.pdf

http://blog.imgtec.com/mips-processors/mips-goes-to-pluto
http://synova.com/proc/MongooseV.pdf

MIPS Design

ì RISC – What does this mean?
ì Reduced Instruction Set Computing
ì Simplified design for instructions
ì Use more instructions to accomplish same task

ì But each instruction runs much faster!

ì 32 bits (originally) – What does this mean?
ì 1 “word”= 32 bits
ì Size of data processed by an integer add instruction
ì New(er) MIPS64 design is 64 bits, but we won’t

focus on that

Spring 2021Computer Systems and Networks

11

ì
MIPS Assembly Programming

Spring 2021Computer Systems and Networks

12

Quotes – Donald Knuth

Spring 2021Computer Systems and Networks

13

“People who are more than
casually interested in
computers should have at least
some idea of what the
underlying hardware is like.
Otherwise the programs they
write will be pretty weird.”
– Donald Knuth

This is your motivation in the assembly labs!

Why Learn Assembly Programming?

ì Computer Science track
ì Understand capabilities (and limitations) of physical

machine
ì Ability to optimize program performance (or

functionality) at the assembly level if necessary

ì Computer Engineer track
ì Future courses (e.g. ECPE 173) will focus on processor

design
ì Start at the assembly programming level and move into

hardware
ì How does the processor implement the add instruction?
ì How does the processor know what data to process?

Spring 2021Computer Systems and Networks

14

Instruction Set Architecture

ì Instruction Set Architecture (ISA) is the interface
between hardware and software
ì Specifies the format of processor instructions
ì Specifies the format of memory addresses

(and addressing modes)
ì Specifies the primitive operations the processor can

perform

Spring 2021Computer Systems and Networks

15

Instruction Set Architecture

ì ISA is the “contract” between the hardware
designer and the assembly-level programmer

ì Documented in a manual that can be hundreds or
thousands of pages long
ì Example: Intel 64 and IA-32 Architectures Software

Developers Manual
ì http://www.intel.com/content/www/us/en/process

ors/architectures-software-developer-manuals.html
ì No joke – the manual PDF (combined volumes)

from Nov 2020 is 5066 pages long!

Spring 2021Computer Systems and Networks

16

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Instruction Set Architecture

ì Processor families share the same ISA

ì Example ISAs:
ì Intel x86
ì Intel / AMD x86-64
ì Intel Itanium
ì ARM
ì IBM PowerPC
ì MIPS

Spring 2021Computer Systems and Networks

17

All completely different,
in the way that C++, Java,
Perl, and PHP are all
different…

… and yet learning one
language makes learning
the next one much easier

Why MIPS?

ì Why choose MIPS?
ì The MIPS ISA manual (volume 1, at least) is a svelte

108 pages!
ì Extremely common ISA in textbooks
ì Freely available simulator
ì Common embedded processor
ì Good building-block for other RISC-style processors
ì Aligns with ECPE 173 course

Spring 2021Computer Systems and Networks

18

Arithmetic Instructions

ì Addition

ì Subtraction

Spring 2021Computer Systems and Networks

19

add <result>, <input1>, <input2>

sub <result>, <input1>, <input2>

Operation / “Op code” Operands

Task : Write Code

ì Write MIPS assembly for

Spring 2021Computer Systems and Networks

20

f = (g+h) – (i+j)

add temp0, g, h
add temp1, i, j
sub f, temp0, temp1

Spring 2021Computer Systems and Networks

21

Congratulations!

You’re now an assembly
programming expert!

Data Sources

ì Previous example was (just a little bit) fake…
ì We made up some variables:

temp0, temp1, f, g, h, i, and j
ì This is what you do when programming in C++

(or any high level language)

Spring 2021Computer Systems and Networks

22

Problem: You can’t make up
variables in assembly!
(as least, not in this fashion)

Data Sources

Spring 2021Computer Systems and Networks

23

Where can we explicitly place data in assembly programming?

CPU

ALU

1. Registers
ì On the CPU itself
ì Very close to ALU
ì Tiny
ì Access time: 1 cycle

2. Memory
ì Off-chip
ì Large
ì Access time: 100+ cycles

Cache Memory

Aside – Cache

ì Review: Does the programmer explicitly manage
the cache?

ì Answer: No!
ì The assembly programmer just reads/writes

memory addresses
ì Cache is managed automatically in hardware
ì Result: Memory appears to be faster than it really is

Spring 2021Computer Systems and Networks

24

ECPE 71

ì From your knowledge of ECPE 71
(Digital Design), how would you
construct a register?

Spring 2021Computer Systems and Networks

25

Flip Flops! (D Flip Flop shown)

ECPE 71 – Group of Registers

Spring 2021Computer Systems and Networks

26

Registers

ì MIPS design: 32 integer registers, each holding 32 bits
ì “Word size” = 32 bits

ì This is only 19 – where are the rest of the 32?
ì Reserved by convention for other uses
ì We’ll learn a few more later…

Spring 2021Computer Systems and Networks

27

Name Use

$zero Constant value: ZERO

$s0-$s7 Local variables

$t0-$t9 Temporary results

Problem 1: Write Code

ì Write MIPS assembly using registers for:

Spring 2021Computer Systems and Networks

28

f = (g+h) – (i+j)

Code:
add $t0, $s0, $s1
add $t1, $s2, $s3
sub $s4, $t0, $t1

Map:
$s0 = g
$s1 = h
$s2 = i
$s3 = j
$s4 = f

P1

More Arithmetic Instructions

ì Add Immediate

Spring 2021Computer Systems and Networks

29

addi <result>, <input1>, <constant>

Can be a positive or
negative number!

RegisterRegister

Code Example

ì Write MIPS assembly using registers for:

Spring 2021Computer Systems and Networks

30

f = g+20

Code:
addi $s0, $s1, 20

Map:
$s0 = f
$s1 = g

ì
MIPS Branches / Loops

Spring 2021Computer Systems and Networks

31

Branches

ì Branch on Equal (if $1 == $2, goto dest)

ì Branch on Not Equal (if $1 != $2, goto dest)

ì Branch on Greater Than (if $1 > $2, goto dest)

Spring 2021Computer Systems and Networks

32

beq <reg1>, <reg2>, <destination>

bne <reg1>, <reg2>, <destination>

bgt <reg1>, <reg2>, <destination>

Branches

ì Branch on Greater Than or Equal (if $1 >= $2, goto dest)

ì Branch on Less Than (if $1 < $2, goto dest)

ì Branch on Less Than or Equal (if $1 <= $2, goto dest)

Spring 2021Computer Systems and Networks

33

bge <reg1>, <reg2>, <destination>

blt <reg1>, <reg2>, <destination>

ble <reg1>, <reg2>, <destination>

Tests, Jump

ì Set on Less Than (if $2 < $3, set $1 = 1, otherwise 0)

ì Jump (goto dest)

Spring 2021Computer Systems and Networks

34

slt <reg1>, <reg2>, <reg3>

j <destination>

Code Example

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

35

if (A == B)
{

<equal-code>
}
else
{

<not-equal-code>
}
<after-if-code>

A==B
?

… …

True False

Code Example

ì Write MIPS assembly:

Spring 2021Computer Systems and Networks

36

Code:
beq $s0,$s1,equal
<not-equal-code>
j done

equal: <equal-code>
j done

done: <after-if-code>

Map:
$s0 = A
$s1 = B

Problem 2: Write Code

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

37

if((A>=B) || A>6)
C=A;

else
C=B-A;

Map:
$s0 = C
$s1 = A
$s2 = B

P2

Code Example

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

38

while (A != B)
{

<loop-body>
}

<post-loop-code>

A!=B?

…

…

True

False

Code Example

ì Write MIPS assembly:

Spring 2021Computer Systems and Networks

39

Code:

start: beq $s0,$s1,done
<loop-body>
j start

done: <post-loop-code>

Map:
$s0 = A
$s1 = B

Problem 3: Write Code

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

40

sum=0;
for(i=0; i<10; i++)
{

sum+=i;
}

Map:
$s0 = sum
$t0 = i

P3

Problem 4: Write Code

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

41

sum=0;
for(i=0;i<10;i++)
{

j=i;
while(j<2*i)
{

sum=sum+j;
j++;

}
}

Map:
$s0 = sum
$s1 = i
$s2 = j

P4

Problem 5: Write Code

ì Write MIPS assembly for:

Spring 2021Computer Systems and Networks

42

while(1)
{
sum=sum+i;
i--;
if(i<=0)
break;

else
continue;

}

Map:
$s0 = sum
$s1 = i

P5

ì
Demos and Resources

Spring 2021Computer Systems and Networks

43

Demos

1. QtSPIM is a MIPS simulator
1. Review installation tutorial
2. Walkthrough of simulator with example1.asm

Spring 2021Computer Systems and Networks

44

Spring 2021Computer Systems and Networks

45

Single Step
Button!

(Advance by 1 instruction)

Resources

ì Many resources available on ECS website

1. The MIPS Example Programs page
(basic arithmetic, looping, I/O, and function calls)
1. The example1.asm program – Good example of

empty “stub program” template to use

2. The MIPS Instruction Set page
1. Partial guide

Spring 2021Computer Systems and Networks

46

Resources

ì Files available in Canvas site (under ECPE 170)
ì HP_AppA.pdf

ì Appendix A from famous Hennessy & Patterson
Computer Organization textbook

ì Assemblers, Linkers, and the SPIM simulator
ì Starting on page 51 is an overview of the MIPS

assembly commands!

ì MIPS_Green_Sheet.pdf
ì “Cheat sheet” for expert programmers
ì MIPS commands, registers, memory conventions, …

Spring 2021Computer Systems and Networks

47

