
ì
Computer Systems and Networks
ECPE 170 – Jeff Shafer – University of the Pacific

C Programming 2

Lab Schedule

Activities
ì This Week

ì Intro to C 2
ì Lab 4 – C Programming

Project

Deadlines
ì Lab 3 – Feb 2nd 2021

by 5am

ì Lab 4 – Feb 16th 2021 by
5am

Spring 2021Computer Systems and Networks

2

Pointer Arithmetic

ì Only addition and subtraction are allowed with
pointers

ì All pointers increase and decrease by the length of
the data-type they point to

ì Example
ì If an integer pointer, iptr holds address 32, then

after the expression iptr++, iptr will hold 36
(assuming integer is 4 bytes).

Computer Systems and Networks

3

Spring 2021

Problem 1
The name of the array is actually a pointer pointing to the first element of the array.

printf(“\n”, %u:”, array+3); //prints?______
printf(“\n”, %u:”, *(array+3)); //prints?______

Subscript [0] [1] [2] [3] [4]
Value 5 6 4 8 2
Address 65528 65532 65536 65540 65544

Consider an integer array named array.
printf(“\n %u:”, array); //prints 65528
printf(“\n %u:”, array+2); //prints 65536
printf(“\n %u:”, *(array+1));
//literally translates to array[1]. Prints 6

P1

Computer Systems and Networks

4

Spring 2021

Pointers and Functions:
Call by value vs. Call by reference

Call by value
main(){

a=5,b=6;
update(a,b);
printf(“%d”,a);

}

update(int a, int b) {
a=a-b;

}

These are just copies.
No change to original
variables

Call by reference (pointer)
main(){

a=5,b=6;
update(&a,&b);
printf(“%d”,a);

}

update(int *a,int *b) {
*a=*a-*b;

}

Modification to actual variable

Computer Systems and Networks

5

Spring 2021

ì
Dynamic Memory Management

Computer Systems and Networks

6

Spring 2021

Memory Allocation with malloc()

ì #include <stdlib.h>

ì void * malloc(int size)
ì Allocate region in memory (aka “new”)
ì Argument: Size of region in bytes to allocate
ì Return value: Pointer to the region

ì void free(void * ptr)
ì De-allocate region in memory (aka “delete”)
ì Argument: Pointer to the region

Computer Systems and Networks

7

Spring 2021

Memory Allocation with malloc()

ì void * calloc(int count, int size)
ì Basically the same as malloc!

ì Imagine you want an array of elements…

ì Argument 1: # of elements to allocate
ì Argument 2: Size of each element in bytes
ì Return value: Pointer to the region

Computer Systems and Networks

8

Spring 2021

Memory Allocation with malloc()

ì void * realloc(void *ptr, int size);
ì Resize a dynamic region of memory

ì Note that it might move to a new address!

ì Argument: Pointer to the original region
ì Argument 2: Desired size in bytes of new region
ì Return value: Pointer to the new region

ì It might be at the same address if you made it smaller
ì It might be at a new address if you made it larger

Computer Systems and Networks

9

Spring 2021

Malloc – 1D

int *array; //array of integers

array = (int *)malloc(sizeof(int)*5);

60 64 68 72 76

array[0] array[1] array[2] array[3] array[4]

address:

value:

array (pointer variable)

value: ????

pointer addr: 32

Computer Systems and Networks

10

60

Spring 2021

Malloc – 2D
Allocate 4x5 integers (Hint for lab 4)

int **array; //a double pointer

array = (int **)malloc(sizeof(int *)*4);

for(i=0;i<4;i++)
array[i] = (int *)malloc(sizeof(int)*5);

an array of integer pointers

array of ints

array of ints

array of ints

array of ints

Computer Systems and Networks

11

Spring 2021

Malloc – 3D
int ***array; //a triple pointer

an array of
double pointers

a matrix of
single pointers

a ‘cuboid’ of integers

Computer Systems and Networks

12

Spring 2021

Problem 2

ì Dynamically allocate space for a 3-D color image of
width, w; height, h; color channel, c. Any pixel is
accessed as image[height][width][c].

P2

Computer Systems and Networks

13

Spring 2021

ì
Memory Management Internals

Spring 2021Computer Systems and Networks

14

Memory Management

ì Who implemented malloc()?

ì C Standard Library: #include <stdlib.h>

ì There are different C Standard Library
implementations!
ì Android: Bionic
ì Apple: BSD-based / Proprietary
ì Microsoft: Proprietary C Runtime Library
ì Linux: GNU C Library (glibc)

http://www.gnu.org/software/libc/

Computer Systems and Networks

15

Spring 2021

http://www.gnu.org/software/libc/

Memory Management

ì Where does the malloc() memory come from?

ì The Heap:
ì A region of memory for dynamic memory allocation
ì Per-process – each program gets its own heap
ì Managed by malloc() and related functions
ì Different from the stack, which is for static variables

(known at compile-time)

Computer Systems and Networks

16

Spring 2021

Memory Management

ì malloc() outline:

1. Call malloc() and request memory

2. malloc() checks existing heap size
ì Sufficient? Update bookkeeping to mark space as

“used” and return address to your program
ì Insufficient?

1. Call operating system via brk()/nmap() to grow
the heap (plus a little extra for future requests)

2. Update bookkeeping and return address to your
program

Computer Systems and Networks

17

Spring 2021

Memory Management

ì Why do we need to call free() after calling
malloc()?
ì Memory leak
ì malloc() cannot re-use that space ever, because

its internal bookkeeping still thinks that region is
used

ì Will only be recovered upon terminating program
ì Operating system wipes out all the memory allocated

to your process (stack, heap, etc…)

Computer Systems and Networks

18

Spring 2021

Memory Management

ì OS creates virtual
memory space for
process when started

ì Region is huge (full 32
or 64 bit space)
ì Not fully mapped to

physical memory
ì Otherwise you

could only fit 1
program in memory

Computer Systems and Networks

19

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Virtual Memory Space
for new process

Spring 2021

Memory Management

ì OS loads in the
program from
disk

ì “Text” region
ì Program code

ì “Data” region
ì Program fixed

data

Computer Systems and Networks

20

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

Data (Program data)

Spring 2021

Memory Management

ì Stack created to
track program
function calls
and local
variables

Computer Systems and Networks

21

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

Data (Program data)

Stack

Spring 2021

Memory Management

ì Heap created to
store dynamic
memory from
malloc()and
related functions

ì Not to scale –
this unused
region is huge!

Computer Systems and Networks

22

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

Data (Program data)

Stack

Heap

(Unused / unmapped virtual memory)

Spring 2021

Memory Management

ì Program starts
running

ì malloc()
allocates some
memory

Computer Systems and Networks

23

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

Data (Program data)

Stack

Heap

(Unused / unmapped virtual memory)

Spring 2021

Memory Management

ì Original heap
space eventually
fills up

ì malloc()
requests
additional space
from the kernel
by using brk()
system call

Computer Systems and Networks

24

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

Data (Program data)

Stack

Heap

(Unused / unmapped virtual memory)

New
space

Spring 2021

Memory Management

ì free()
deallocates
blocks from the
heap

Computer Systems and Networks

25

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

Data (Program data)

Stack

Heap

(Unused / unmapped virtual memory)

Spring 2021

Memory Management

ì Program
terminates

ì OS expunges
entire virtual
address space
ì Everything is

deleted

Computer Systems and Networks

26

0x0000000000000000

0xFFFFFFFFFFFFFFFF (32 or 64 bit)

Text (Program code)

Data (Program data)

Stack

Heap

(Unused / unmapped virtual memory)

Spring 2021

Buffer Overflow Vulnerability

ì What is a buffer overflow bug?
ì char buf1[8]="";

char buf2[8]="";
strcat(buf1, "excessive");

ì End up overwriting two characters beyond buf1!

27

Computer Systems and Networks Spring 2021

Buffer Overflow Vulnerability

ì Why is a buffer overflow bug dangerous?

ì What is beyond my buffer in memory?
ì Other variables and data? (probably buf2)
ì The stack? (further out)
ì The return address to jump to after my function

finishes?

ì If app is running as administrator, attacker now has
full access!

28

Computer Systems and Networks Spring 2021

Memory Management

ì Limitless opportunities in C for errors regarding memory
L
ì Forgetting to free() some dynamic memory
ì Trying to free() dynamic memory more than once
ì Losing a pointer to dynamic memory (memory is “lost”)
ì Accessing array elements past the end of the array
ì Mis-calculating array pointers that miss their desired

target

ì Will learn a tool (Valgrind) in Lab 5 to analyze your
program and detect / trace errors

29

Computer Systems and Networks Spring 2021

What’s the Error?

Computer Systems and Networks

30

char *a = malloc(128*sizeof(char));
char *b = malloc(128*sizeof(char));
b = a;
free(a);
free(b);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

Spring 2021

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What’s the (Potential) Error?

Computer Systems and Networks

31

char *a = malloc(128*sizeof(char));

dataLen = <some value...>

// Copy “dataLen” bytes
// starting at *data to *a
memcpy(a, data, dataLen);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

Spring 2021

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What’s the Error?

Computer Systems and Networks

32

ptr = (char *) malloc(strlen(string_A));
strcpy(ptr, string_A);

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

Spring 2021

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

What’s the Error?

Computer Systems and Networks

33

int *get_ii()
{

int ii = 2; // Local stack variable
return ⅈ

}
main()
{
int *ii;
ii = get_ii();
... Do stuff using ii pointer

}

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

Spring 2021

http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

Computer Systems and Networks

34

http://xkcd.com/371/

Spring 2021

Memory Management

ì What’s a NULL pointer?
ì Pointer value is 0x000000000
ì Meaning is that the pointer is not pointing anywhere

ì What happens if you dereference a NULL pointer?
ì Telling the computer to read from (or write) to the

value stored in the pointer, which is 0x000000000
ì Behavior undefined and generally unpleasant on

various computer systems

Computer Systems and Networks

35

Spring 2021

Memory Management

ì “Segfault” = Segmentation Fault

ì Your program tried to read or write a virtual memory
address that is not allowed
ì Tried to read memory outside of program bounds?
ì Tried to write read-only memory regions? (used for

program data)

ì “Segmentation” was the name of an old system (back
before Intel 386 processors) used to divide physical
computer memory into many virtual address regions,
one per application process
ì The Segfault name stuck even though we now use paging

to manage virtual memory

Computer Systems and Networks

36

Spring 2021

ì
Structures

Computer Systems and Networks

37

Spring 2021

Structures

Computer Systems and Networks

38

struct database
{

int id_number;
int age;
float salary;

};

int main()
{

struct database employee;
employee.age = 22;
employee.id_number = 1;
employee.salary = 12000.21;

}

Useful way to group
related variables!

Spring 2021

Problem 3

Computer Systems and Networks

39

P3

Declare a structure called board that contains:
• a double character pointer matrix
• two integer variables height and width denoting the

number of rows and columns in the matrix.

Inside main, do the following:

1. Create a structure object called myboard,
initialize matrix to NULL, set height to 7 and width to 7

2. Dynamically allocate matrix to hold height x
width elements

Spring 2021

Problem 4

Computer Systems and Networks

40

P4

Continue with the code from Problem 3.

Traverse the 2D matrix of dimensions height (rows) and width (columns). Write a C
snippet to find the first instance of lowercase letter ‘e’. Obtain all the letters starting
from ‘e’ placed diagonally downwards and to the right in this matrix. Store the letters
in a 1D array, buffer. Make sure that buffer is of large enough size to contain all of the
letters.

Spring 2021

Problem 5

Computer Systems and Networks

41

P5

Continue with the code from Problem 3.

free() is actually a reverse operation of malloc. The steps you use for free are opposite
of the steps for malloc. Free the dynamically allocated 2D matrix you created in
Problem 3.

Spring 2021

Computer Systems and Networks

42

You’re ready to

Begin Lab 4!

Spring 2021

