
Computer Systems and
Networks

LECTURE 12: PYTHON BYTES,
TCP/IP (LAB 08)

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

Today’s Agenda

Python exercises to simulate network communication:
•  we’ll simulate construction of a client’s request for a server
•  we’ll simulate how the client ‘decodes’ the server’s

response
•  TCP/IP networking
•  If you followed the lecture well, you may finish lab08 today!

Discuss what happens under
the hood when you…

type www.google.com/images/srpr/logo3w.png in the URL tab
of Mozilla

Python Bytes

Python bytes() returns a byte sequence of the passed
parameter:

byteobject = bytes(parameter, <encoding type>)

To decode back from bytes:
byteobject.decode(<decoding type>)

Useful in networking where messages are sent as bytes

Exercise 1a: Warm-up with
Python from Last assignment

Open the Python interpreter, initialize a variable called url to
http://www.google.com/images/srpr/logo3w.png. Extract hostname
and filepath using Python string operations.

filepath should be /images/srpr/logo3w.png
hostname should be www.google.com

#create a string, request that should print like this:
>>> print(request)
Host: www.google.com
File: /images/srpr/logo3w.png
Connection: close

>>>

\r\n\r\n

Exercise 1b: Convert the
request to bytes

>>> send_request = bytes(request,’ascii’) #request
to be send to a server in bytes, encoded ascii

>>> print(send_request) #what happens?

#decode it back
>>>decode_req=send_request.decode(‘ascii’)
>>>print(decode_req)

Exercise 2: Create a string, response,
that prints as shown. Create its byte
version, byte_response

Create a string, response, that prints as follows:
>>> print(response)
HTTP accepts the command (code 202)
this line is message header

this line is data

\r\n\r\n
header

data

Exercise 3: Extract header and
data from
byte_response

>>> header
HTTP accepts the command (code 202)\n this line is
messsage header
>>> data
this line is data
>>>

After splitting, header and data should
print like this:

Network Model
Application	Layer	

(Myriad	examples:	Web	browser,	web	server,	etc…)	

Transport	Layer	
(Reliability	–	e.g.	TCP)	

Network	Layer	
(Global	Network	–	e.g.	IP)	

Link	Layer	
(Local	Area	Network	–	e.g.	Ethernet)	

Physical	Layer		
(“Bit	on	a	Wire”)	

Application Layer
Application	Layer	

Transport	Layer	
Network	Layer	
Link	Layer	

Physical	Layer	

HTTP	 DNS	 IMAP	

Sockets	

… and many more!

Skype	 BitTorrent	 RDP	

SSH	 NTP	 NFS	

Client-Server Architecture and
TCP/IP

Client	
Process	

Server	
Process	

1. Request 2. Processing

Server Disk 3. Response

Client and server communicate via Sockets

Internet Protocol (IP): provides naming scheme and
(unreliable) mechanism to transmit packets called datagrams

Transmission Control Protocol (TCP) provides mechanism
for reliable bi-directional connection

What is a Socket?
	 Process	sends/receives	messages	
to/from	its	socket	

	 Socket	analogous	to	door	
◦  Sending	process	shoves	message	out	
door	

◦  Transport	infrastructure	on	other	side	
of	door	carries	message	to	socket	at	
receiving	process	

◦  Imagine	you	are	just	writing	to	a	file…	

	 API	allow	customization	of	socket	
◦  Choose	transport	protocol	
◦  Choose	parameters	of	protocol	

process

TCP with
buffers,
variables

socket	

host or
server

process

TCP with
buffers,
variables

socket	

host or
server

Internet

controlled
by OS

controlled by
app developer

Addressing Processes
	 To	receive	messages,	each	process	on	a	host	must	have	an	
identifier	
◦  IP	addresses	are	unique	
◦  Is	this	sufficient?	

	 No,	there	can	thousands	of	processes	running	on	a	single	
machine	(with	one	IP	address)	

	 Identifier	must	include	
◦  IP	address	
◦  and	port	number	(example:	80	for	web)	

	 Each	host	has	
	65,536	ports	

	 Some	ports	are		
reserved	for		
specific	apps	
◦  FTP	(20,	21),	Telnet	(23),	HTTP	(80),	etc…	

	 Outgoing	ports	(on	clients)	can	be	dynamically	assigned	by	OS	in	upper	
region	(above	49,152)	–	called	ephemeral	ports	

	 See	http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers			

Ports
Port 0

Port 1

Port 65535

Lab 08 Client Socket Usage:
Python functions
	 Basic	socket	functions	for	connection-oriented	(TCP)	clients	

1.   socket() create	the	socket	descriptor	

2.   connect((host,port)) connect	to	the	remote	server	

3.   send(),sendall(),recv()	communicate	with	the	server	

4.   close()	 	end	communication	by	closing	
	 	 	socket	descriptor	

	

Google search and gather information for these functions to
perform TCP/IP

Lab 08 -- Hypertext Transfer
Protocol Overview

	 HTTP	is	the	application	layer	
protocol	for	the	web	

	 It	is	how	the	client	and	server	
communicate	

	 Client/server	model	
◦  Client:	browser	that	requests,	
receives,	“displays”	Web	objects	

◦  Server:	Web	server	sends	objects	in	
response	to	requests	

PC running
Chrome

Server
running

Apache Web
server

Mac running
Safari

Web and HTTP
	 Web	page	consists	of	base	HTML	file	and	(potentially)	many	
referenced	objects	
◦  HTML	file,	PNG	image,	Flash	video,	…	

	 Each	object	is	addressable	by	a	URL	
	 Example	URL:	

www.somecompany.com/someDept/image.png

host name complete path
to file

HTTP Response Status Codes
200 OK	
◦  Request	succeeded,	requested	object	later	in	this	message	

301 Moved Permanently	
◦  Requested	object	moved,	new	location	specified	later	in	this	
message	(Location:)	

400 Bad Request	
◦  Request	message	not	understood	by	server	

404 Not Found	
◦  Requested	document	not	found	on	this	server	

505 HTTP Version Not Supported	

A few
examples
out of
many!

HTTP Request Message
(Client->Server)

GET /about/ HTTP/1.1
Host: www.google.com
User-agent: Mozilla/13.0
Connection: close <\r\n>
<line with only \r\n>

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

HTTP is a text-based protocol. The client sends
ASCII bytes in the request, and the server

responds with ASCII bytes in the reply.

Lab 8 Tasks: display.py
(Remember Exercises 1a 1b)

Student Work #1: Build the HTTP request

Append info to a request string to construct HTTP
request:

GET <filename> HTTP/1.1
Host: <host>
Connection: close <\r\n>
<line with only \r\n>

request=

Parsed by your
boilerplate code!

Lab 8 Tasks: display.py
Student Work #2,3,4: Connect to the server and
send the entire request

2. Establish the socket. (Which socket
function?)
3. Connect to the host. (Which socket
function?)
4. Send the request string as bytes. (Which
set of functions?)

HTTP Response Message (Server ->
Client) (Remember Exercise 3)

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: text/html
Last-Modified: Tue, 10 Apr 2012 09:33:47
Date: Tue, 10 Apr 2012 17:50:51 GMT
Expires: Tue, 10 Apr 2012 17:50:51 GMT
Cache-Control: private, max-age=0
X-Content-Type-Options: nosniff
Server: sffe
X-XSS-Protection: 1; mode=block
Transfer-Encoding: chunked
<line with only \r\n>
<Data begins here...>

status line
(protocol

status code,
status phrase)

header
 lines

data, e.g.,
requested
HTML file

Lab 8 Tasks: display.py
Student Work #5: Continue to receive chunks of 64
KB until you receive no more. You need to set up a
loop.

Which socket function to receive data (in 64 KB
chunks) from server?

How do you continue to receive data until you
receive 0 bytes?
How do you separate the header and data?

Lab 8 Task: Close the
connection

Student Work#6:
Which python function to close the connection?

Reading
Assignment: Read
Big-Endian and
Little-Endian Format

Assignment:
Complete the
WireShark tutorial
on Lab09 page

