
Computer Systems and
Networks

LECTURE 8: PERFORMANCE
OPTIMIZATION

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

Today’s Agenda

Performance Optimization: Compiler Techniques

Performance Optimization: Programmer Techniques
Code motion

Reduce procedure calls
Eliminate unneeded memory accesses
Loop Unrolling

Compiler Goals
	 What	are	the	compiler’s	goals	with	
optimization	switch	on?	
	 Reduce	program	code	size	
	 Reduce	program	execution	time	

Compiler Optimization Levels
O1: Moderately optimize the code, but do not increase the
compilation time

gcc –O1 –o myexec main.c

O2: Optimize more, take time, but do not increase the code
size

gcc –O2 –o myexec main.c

O3: Optimize aggressively, take time, even if code size
increases!

gcc –O3 –o myexec main.c

Problem 1: O3 increases code
size due to inlining

	 Inline	Functions	

int max(int a, int b)
{

 if(a>b)
 return a;
 else
 return b;

}

max1 = max(w,x);
max2 = max(y,z);
printf("%i %i\n",

 max1, max2);

if(w>x) max1 = w;
else max1 = x;

if(y>z)max2 = y;
else max2 = z;

printf("%i %i\n",

 max1, max2);

Write down pros and cons.

Function Call Overhead
	 What	specific	overhead	exists	
here?	

	 Calling	a	function	
◦  Save	variables	in	the	processor	
(“registers”)	to	memory	(in	the	
stack)	

◦  Jump	to	the	function	
◦  Create	new	stack	space	for	
function	and	its	local	variables	

	 Returning	from	function	
◦  Load	old	values	from	stack	
◦  Jump	to	prior	location	

int max(int a, int b)
{

 if(a>b)
 return a;
 else
 return

b;
}

O3 performs Loop
vectorization

for(i=0;i<16;i++) {
C[i]=A[i]+B[i];
}

A[0]	 A[1]	 A[2]	 A[3]	

B[0]	 B[1]	 B[2]	 B[3]	

C[0]	 C[1]	 C[2]	 C[3]	

vector units

Vote
	 Who	will	do	a	better	job	improving	program	performance?	

	 The	compiler 				-vs-				The	programmer	

Problem 2: Programmer
Optimization: Code Motion

Move a code section from a loop to outside because that
section does not need to be called over and over again!

for (int x=0; x<strlen(userinput); x++)
{

 if(tolower(game.grid[i][j+x])==tolower(userinput[x]))
 {
 flag=1;
 }
 else {
 flag=0;
 break;
 }

}

Problem 3: Program Optimization:
Reduce Procedure Calls

Reduce function calls as much as you can. Can you find out
why this code is inefficient and fix it?

for(i=0;i<listsize;i++)
{

ele = get_num(head,i);
printf(”%d”,ele);
}

int get_num(struct list
*head, int position) {

struct list *temp=head;
for(int i=0;i<position;i++)
{
temp=temp->next;
}
return temp->num;
}

struct list {
struct list *next;
int num;
};

Problem 4: Program Optimization: Reduce
Unwanted memory accesses. Assume level2v
and level1v as float arrays

for(i=0;i<1e6;i++) {
level2v[i]+ = 0.5*(1+atan2(divide((level1v[i]+1.2),
18)));
level2v[i]+= 0.5*(1+atan2(divide((level1v[i]-2),30)));
level2v[i]+= divide(1,cos(divide((level1v[i]-2),60)))
}

Where is the inefficiency? Fix it!

Problem 5: Program Optimization:
Loop Unrolling (do it 2 times for
now). 4 times for your practice

In Problem 4 solution, Where is the
inefficiency? Fix it!

In-Class Participation Problem:
5 minutes

Google search why excessive use of global variables is
discouraged.

Google search: switch vs. if-else ladder. Which one is
better for performance?

Programmer Optimizations
	 Third	part	of	lab	will	step	you	through	six	code	
optimizations	
	
1. Code	motion	
2. Reducing	procedure	calls	
3. Eliminating	memory	accesses	
4. Unrolling	loops	x2	
5. Unrolling	loops	x3	
6. Adding	parallelism	

Let’s Keep
Coding!
LAB 5 AND LAB 6

