
Computer Systems and
Networks

LECTURE 4: C PROGRAMMING

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

Deadlines

Lab 2 September 12th, 2019

Lab 3 September 19th, 2019

Today’s Class
o 	The	C	compiler	and	Makefile		
o  printf, scanf,	and	format	specifiers	
o 	Arrays:	one-dimensional	and	multi-dimensional	
o 	Introduction	to	Pointers	

A simple code compilation

unix> gcc –o myprog main.c
unix> ./myprog

Compiler Operation

Why So Many Compilation
Steps?

C	

C++	

Objective-C	

Fortran	

Ada	

Others…	

GNU	
Compiler	
Collection	

x86	

x86-64	

ARM	

PowerPC	

68000	

MIPS	
(and many more!)

We don’t just care about 1 language or 1
processor family!

When your program has
multiple files

unix> gcc main.c file2.c -o MyProg
unix> ./MyProg

Linker + Loader

Result: Program binary (saved on disk)

11011101010000001010000001101110101000
00010100000011011101010000001010000001
10111010100000010100000011011101010000
00101000000110111010100000010100000011
01110101000000101000000110111010100000
01010000001101110101000000101000000110
11101010000001010000001101110101000000
10100000011011101010000001010000001101
11010100000010100000011011101010000001

Operating System Goals
Security: OK to run file?

Memory management: Find space and create new virtual
memory region for this program

File system: Retrieve program binary code from disk

Loader: Place program binary code into memory
Scheduler: Find CPU time for program to run

Context switch – Program starts running

Problem 1

Without Google search, can you identify the linux command
to link object files.

Makefile
	 Goal:	Compile	our	program	with	one	command:	
	
	

	 A	Makefile	is	a	text	file	that	specifies	how	to	
compile	your	program	
◦ The	make	utility	reads	the	Makefile	
◦ You’ll	learn	how	this	file	works	in	Lab	3	

unix> make

An Intermediate Makefile
all: factorial_program
factorial_program: main.o factorial.o output.o

gcc main.o factorial.o output.o -o
factorial_program
main.o: main.c

gcc -c main.c
factorial.o: factorial.c

gcc -c factorial.c
output.o: output.c

gcc -c output.c
clean:

rm -rf *.o factorial_program

An Advanced
Makefile

The variable CC specifies which compiler will
be used.
(because different unix systems may use
different compilers)
CC=gcc

The variable CFLAGS specifies compiler options
-c : Only compile (don't link)
-Wall: Enable all warnings about lazy /
dangerous C programming
CFLAGS=-c -Wall
The final program to build
EXECUTABLE=factorial_program

--

all: $(EXECUTABLE)

$(EXECUTABLE): main.o factorial.o output.o
$(CC) main.o factorial.o output.o -o $

(EXECUTABLE)

main.o: main.c
$(CC) $(CFLAGS) main.c

factorial.o: factorial.c
$(CC) $(CFLAGS) factorial.c

output.o: output.c
$(CC) $(CFLAGS) output.c

clean:
rm -rf *.o $(EXECUTABLE)

C Tutorial

Print with printf()
	 printf("This is a string\n");
	 printf("The integer is %i\n", num);
	 printf("The floating-point values are %g
and %g\n", num1, num2);

Output with printf()
Format	“Type”	Code	 Corresponding	Variable	Type	

d	or	i int	(interpret	as	signed	2’s	comp)	

u int	(interpret	as	unsigned)	

x int	(print	as	hexadecimal)	

f	or	g float/double	

c char	

s string	(null-terminated	array	of	chars)	

p An	address	to	which	the	pointer	points	

Prefix with l or ll (i.e. “long” or “long long” for larger 64-
bit data types)
ì  Lots of formatting options not listed here…

ì  # of digits before / after decimal point?
ì  Pad with zeros?

Input with scanf()
	 Input	from	console	
	 scanf("%d %c", &myint, &mychar)
	 Requires	the	address	of	the	destination	variable	
◦ Use	the	&	operator	to	obtain	address	

	 Caveat:	Array	names	are	already	the	“address	of”!	
◦ char myarray[8];
scanf("%s", myarray)

No & needed
here!

Problem 2 – Read the man
pages for printf and scanf
	 Man(ual)	pages	exist	for	common	programming	functions	
too	

	 unix> man printf
	 unix> man scanf

Arrays

Arrays
Contiguous block of memory
You can have arrays for int, char, float, double,
structures…
int myarray[5]; //static declaration

4	 8	 12	 16	 20	

myarray[0]	 myarray[1]	 myarray[2]	 myarray[3]	 myarray[4]	

address:

NOTE: Name of the array is the address of the first element

printf(“%p”,myarray); //prints what?

2-dimensional arrays
int myarray[5][5]; //static declaration

Address:	4	
myarray[0][0]	

Address:	8	
	

Address:	12	
	

Address:	16	 Address:	20	

Address:	24	 Address:	28	
myarray[1][1]	

Address:	32	
	

Address:	36	
	

Address:	40	

Address:	44	 Address:	488	 Address:	52	 Address:	56	
	

Address:	60	
	

Address:	64	
	

Address:	68	
	

Address:	72	
myarray[3][2]	
	

Address:	76	 Address:	80	

Address:	84	 Address:	88	 Address:	92	 Address:	96	 Address:	100	

Memory
map:

Problem 3: Looping through
an array

Consider a 3-D array, int image[256][256][3] for an RGB
color image. The first subscript denotes the number of rows, the
second subscript denotes the number of columns, and the third
subscript denotes the number of color channels. For example, a
pixel at row i and column j will have an R value given by
image[i][j][0], G value given by image[i][j][1], and B
value given by image[i][j][2]. Any pixel has a yellow color if
it’s R and G values are 255 and B value is 0. Write a for loop to
search for the location of the very first yellow pixel in image. The
search should terminate once the yellow pixel is found. Search in
row-wise manner.

Pointers

Pointers are special variables that hold/store memory
addresses of other variables.

When a pointer, say iptr, holds the address of an integer variable,
say ivar, then we say: “iptr is an integer pointer that points to ivar.”
int ivar=45;
int *iptr; iptr = &ivar; //iptr points to ivar

45	ivar:

address:
65536

65536	iptr:

address:
65520

‘&’ is ‘address of variable’ operator. For example, &ivar translates
to: “address of variable ivar”.

‘*’ is ‘value at address stored in pointer’ operator. For example,
*iptr translates to: “value at address stored in pointer iptr”.

Example pointer declaration:
int *iptr; //an integer pointer that will point
to an integer

int **dptr; //A double pointer that will point
to an integer pointer

int ***tptr; //A triple pointer pointing to a
double pointer.

int ****quadptr //

We can have a ‘multiple’ pointer

Problem 4

Problem 5

Next Class
 Pointer basics

 Pointers and Arrays

 Dynamic Allocation

 Pointers and Structures

 Linked Lists

File I/O in C

